New Understanding of Aging Stephen Gasior (Xootfly) October 26th, 2022 References Vaiserman, A., & Krasnienkov, D. (2021). Telomere length as a marker of biological age: state-of-the-art, open issues, and future perspectives. Frontiers in Genetics, 11, 630186. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7859450/ Lu, A. T., Quach, A., Wilson, J. G., Reiner, A. P., Aviv, A., Raj, K., ... & Horvath, S. (2019). DNA methylation GrimAge strongly predicts lifespan and healthspan. Aging (Albany NY), 11(2), 303. https://www.aging-us.com/article/101684/text Demaria, M., Ohtani, N., Youssef, S. A., Rodier, F., Toussaint, W., Mitchell, J. R., ... & Campisi, J. (2014). An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Developmental cell, 31(6), 722-733. https://www.sciencedirect.com/science/article/pii/S1534580714007291 Gladyshev, V. N. (2014). The free radical theory of aging is dead. Long live the damage theory!. Antioxidants & redox signaling, 20(4), 727-731. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3901353/ Smeal, T., Claus, J., Kennedy, B., Cole, F., & Guarente, L. (1996). Loss of transcriptional silencing causes sterility in old mother cells of S. cerevisiae. Cell, 84(4), 633-642. https://www.cell.com/fulltext/S0092-8674(00)81038-7 Kennedy, B. K., Austriaco Jr, N. R., Zhang, J., & Guarente, L. (1995). Mutation in the silencing gene S/R4 can delay aging in S. cerevisiae. Cell, 80(3), 485-496. https://www.sciencedirect.com/science/article/pii/0092867495904999 Nakagawa, T., & Guarente, L. (2011). Sirtuins at a glance. Journal of cell science, 124(6), 833-838. https://journals.biologists.com/jcs/article/124/6/833/32159/Sirtuins-at-a-glance Mostoslavsky, R., Chua, K. F., Lombard, D. B., Pang, W. W., Fischer, M. R., Gellon, L., ... & Alt, F. W. (2006). Genomic instability and aging-like phenotype in the absence of mammalian SIRT6. Cell, 124(2), 315-329. Simon, M., Yang, J., Gigas, J., Earley, E. J., Hillpot, E., Zhang, L., ... & Gorbunova, V. (2022). A rare human centenarian variant of SIRT6 enhances genome stability and interaction with Lamin A. The EMBO Journal, 41(21), e110393. https://www.embopress.org/doi/full/10.15252/embj.2021110393 Onn, L., Portillo, M., Ilic, S., Cleitman, G., Stein, D., Kaluski, S., ... & Toiber, D. (2020). SIRT6 is a DNA double-strand break sensor. Elife, 9, e51636. https://elifesciences.org/articles/51636 Van Meter, M., Kashyap, M., Rezazadeh, S., Geneva, A. J., Morello, T. D., Seluanov, A., & Gorbunova, V. (2014). SIRT6 represses LINE1 retrotransposons by ribosylating KAP1 but this repression fails with stress and age. Nature communications, 5(1), 1-10. https://www.nature.com/articles/ncomms6011 Simon, M., Van Meter, M., Ablaeva, J., Ke, Z., Gonzalez, R. S., Taguchi, T., ... & Gorbunova, V. (2019). LINE1 derepression in aged wild-type and SIRT6-deficient mice drives inflammation. Cell metabolism, 29(4), 871-885. https://www.sciencedirect.com/science/article/pii/S1550413119301202 Pawge, G., & Khatik, G. L. (2021). p53 regulated senescence mechanism and role of its modulators in age-related disorders. Biochemical Pharmacology, 190, 114651. https://febs.onlinelibrary.wiley.com/doi/full/10.1111/febs.16325 Imai, S., & Kitano, H. (1998). Heterochromatin islands and their dynamic reorganization: a hypothesis for three distinctive features of cellular aging. Experimental gerontology, 33, 555-570. https://www.sciencedirect.com/science/article/abs/pii/S0531556598000370 Andrenacci, D., Cavaliere, V., & Lattanzi, G. (2020). The role of transposable elements activity in aging and their possible involvement in laminopathic diseases. Ageing research reviews, 57, 100995. https://www.sciencedirect.com/science/article/pii/S1568163719301837 Okudaira, N., Ishizaka, Y., & Tamamori-Adachi, M. (2022). Resveratrol blocks retrotransposition of LINE-1 through PPAR α and sirtuin-6. Scientific reports, 12(1), 1-14. https://www.nature.com/articles/s41598-022-11761-0 Bonkowski, M. S., & Sinclair, D. A. (2016). Slowing ageing by design: the rise of NAD+ and sirtuin-activating compounds. Nature reviews Molecular cell biology, 17(11), 679-690. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5107309/ Zhang, Y., Tang, L., Lu, J., Xu, L., Cheng, B., & Xiong, J. (2020). Senolytic compound ABT-263 improved senescent macrophages function by inducing autophagy and protected the aged mouse from sepsis. doi:10.21203/rs.3.rs-19857/v1. PPR:PPR133274. https://europepmc.org/article/MED/33794800#free-full-text Liu, J. K. (2022). Antiaging agents: safe interventions to slow aging and healthy life span extension. Natural Products and Bioprospecting, 12(1), 1-36. https://link.springer.com/article/10.1007/s13659-022-00339-y References not cited Andreassen, S. N., Ezra, M. B., & Scheibye-Knudsen, M. (2019). A defined human aging phenome. Aging, 11(15), 5786-5806. https://www.aging-us.com/article/102166/text https://en.wikipedia.org/wiki/Free-radical_theory_of_aging 2022 Aging Conference https://www.youtube.com/channel/UClOnplI2mzpJlwdX3vlOMJA/videos National Institutes of Health (NIH): National Institutes of Aging (NIA) https://www.nia.nih.gov/ American Federation for Aging Research https://www.afar.org/superagers Tian, X., Firsanov, D., Zhang, Z., Cheng, Y., Luo, L., Tombline, G., ... & Gorbunova, V. (2019). SIRT6 is responsible for more efficient DNA double-strand break repair in long-lived species. Cell, 177(3), 622-638. https://www.sciencedirect.com/science/article/pii/S0092867419303447 Gorbunova, V., Simon, M., Trombline, G., Yang, J., Earley, E. J., Zhang, L., ... & Schaff, T. M. (2021). A rare human centenarian variant of SIRT6 enhances genome stability and interaction with Lamin A. bioRxiv. https://www.biorxiv.org/content/10.1101/2021.12.13.472381v1.abstract Probably interesting but behind paywall SIRT6 Promotes DNA Repair Under Stress by Activating PARP1 https://www.science.org/doi/abs/10.1126/science.1202723 Longevity secret: A pluripotent superpower https://www.cell.com/cell-metabolism/fulltext/S1550-4131(22)00183-8 Mills, K. D., Sinclair, D. A., & Guarente, L. (1999). MEC1-dependent redistribution of the Sir3 silencing protein from telomeres to DNA double-strand breaks. Cell, 97(5), 609-620. https://www.cell.com/cell/fulltext/S0092-8674(00)80772-2 Induction of genetic instability by ionizing radiation https://www.sciencedirect.com/science/article/abs/pii/S0764446999800341