Monday, February 12, 10 AM PST Darwin Day, Heroes of Evolution: Francis H. Arnold By Dr. Stephen L. Gasior https://www.sciencecircle.org/event/ Abstract: Francis H. Arnold https://en.wikipedia.org/wiki/Frances_Arnold Google Scholar Citations https://scholar.google.com/citations?user=wil5NhcAAAAJ&hl=en&oi=ao Faculty Page and Lab https://cce.caltech.edu/people/frances-h-arnold http://fhalab.caltech.edu/ The Nobel Prize in Chemistry 2018 https://www.nobelprize.org/prizes/chemistry/2018/arnold/lecture/ https://www.nobelprize.org/prizes/chemistry/2018/arnold/biographical/ https://www.nobelprize.org/uploads/2018/10/arnold-lecture.pdf https://www.nobelprize.org/uploads/2018/10/advanced-chemistryprize-2018.pdf https://www.nobelprize.org/uploads/2018/10/popular-chemistryprize2018.pdf Frances H. Arnold: Nobel Lecture in Chemistry 2018 https://www.youtube.com/watch?v=6hOZ5e0g9Uo Clancy, S. & Brown, W. (2008) Translation: DNA to mRNA to Protein. Nature Education 1(1):101 https://www.nature.com/scitable/topicpage/translation-dna-to-mrna-to-protein-393/ Protein biosynthesis https://en.wikipedia.org/wiki/Protein_biosynthesis Enzyme https://en.wikipedia.org/wiki/Enzyme Chen, K., & Arnold, F. H. (1991). Enzyme engineering for nonaqueous solvents: random mutagenesis to enhance activity of subtilisin E in polar organic media. Bio/Technology, 9(11), 1073-1077. https://www.nature.com/articles/nbt1191-1073 Chen, K., & Arnold, F. H. (1993). Tuning the activity of an enzyme for unusual environments: sequential random mutagenesis of subtilisin E for catalysis in dimethylformamide. Proceedings of the National Academy of Sciences, 90(12), 5618-5622. https://www.pnas.org/doi/abs/10.1073/pnas.90.12.5618 You, L., & Arnold, F. H. (1996). Directed evolution of subtilisin E in Bacillus subtilis to enhance total activity in aqueous dimethylformamide. Protein Engineering, Design and Selection, 9(1), 77-83. https://academic.oup.com/peds/article/9/1/77/1525399 Zhao, H., & Arnold, F. H. (1999). Directed evolution converts subtilisin E into a functional equivalent of thermitase. Protein engineering, 12(1), 47-53. https://academic.oup.com/peds/article/12/1/47/1513188 Arnold, F. H. (1998). When blind is better: protein design by evolution. Nature biotechnology, 16(7), 617-618. https://www.nature.com/articles/nbt0798-617 Brustad, E. M., & Arnold, F. H. (2011). Optimizing non-natural protein function with directed evolution. Current opinion in chemical biology, 15(2), 201-210. https://www.sciencedirect.com/science/article/abs/pii/S1367593110001948 Cytochrome P450 https://en.wikipedia.org/wiki/Cytochrome_P450 Joo, H., Lin, Z., & Arnold, F. H. (1999). Laboratory evolution of peroxide-mediated cytochrome P450 hydroxylation. Nature, 399(6737), 670-673. https://www.nature.com/articles/21395 Glieder, A., Farinas, E. T., & Arnold, F. H. (2002). Laboratory evolution of a soluble, self-sufficient, highly active alkane hydroxylase. nature biotechnology, 20(11), 1135-1139. https://www.nature.com/articles/nbt744 McIntosh, J. A., Farwell, C. C., & Arnold, F. H. (2014). Expanding P450 catalytic reaction space through evolution and engineering. Current Opinion in Chemical Biology, 19, 126-134. https://www.sciencedirect.com/science/article/abs/pii/S1367593114000155 Radley, E., Davidson, J., Foster, J., Obexer, R., Bell, E. L., & Green, A. P. (2023). Engineering enzymes for environmental sustainability. Angewandte Chemie International Edition, 62(52), e202309305. https://onlinelibrary.wiley.com/doi/10.1002/anie.202309305 Hoose, A., Vellacott, R., Storch, M., Freemont, P. S., & Ryadnov, M. G. (2023). DNA synthesis technologies to close the gene writing gap. Nature Reviews Chemistry, 7(3), 144-161.