An abstract.

How do we know what we say we know? In synthetic chemistry, there are tools we use which give us data from which we can deduce details of a molecule’s structure. Many of these tools are spectroscopic in nature and some rely on changes in how a molecule rotates, vibrates, how its electrons are distributed, or even how individual types of nuclei spin. There are also methods based on diffraction that can yield a “snapshot” of a molecule’s structure. This talk will be from a synthetic perspective, i.e. how do we make sure that what we tried to make is what we actually made, and what sort of purity did we achieve?
So What is a “Way of Knowing”?

• How we ascertain that what we think we know has some truth to it.

• My intro is based on a great statement from the Union of Concerned Scientists.

• There are many “Ways of Knowing” but my talk is going to focus on science... specifically chemistry.

Statement from the Union of Concerned Scientists (UCS):

- Ways of knowing used in society include the following:

- **Authority**
- **Belief**
- **Logic**
- **Scientific Inquiry**

Not an exclusive list!

http://www.ucsusa.org/scientific_integrity/what_you_can_do/evolution-and-id-footnotes.html#1-1
UCS Definitions

- **Authority**: Parents, teachers, community leaders, and physicians are all figures of authority. The level of trust we have in them depends on our personal experiences and access to knowledge about them.

- **Belief**: God or gods, or other external or internal supernatural powers can impart or support beliefs. There are numerous deities and levels and types of belief within any society.

- **Logic**: Logic includes tests and rules that help to identify what is true and false. It is an important element of scientific inquiry but is limited by its lack of reference to the natural world.

- **Scientific Inquiry**: Science provides knowledge based on empirical evidence from the natural world. Science is the only way of knowing that provides explanations that are testable and verifiable. Ideas in science accumulate over time and are subject to revision and change.

http://www.ucsusa.org/scientific_integrity/what_you_can_do/evolution-and-id-footnotes.html#1-1
Theories (according to UCS)

• Must be tested by experimentation and observation of the natural world.
• Must be falsifiable (i.e. experiments must exist that could prove it false).
• Cannot be proven, only confirmed or disconfirmed.
• Subject to revision and change

Scientific Method

• Donut of Science!
Chemistry is science... any specific differences from other branches of science?

• Absolutely!
• Atoms are very small, so chemists tend to be detail-oriented.

• Have to rely on physical methods to garner information...
 • Until recently, could not see or manipulate individual atoms directly!
• Chemistry has developed into a HUGE science
 • Analytical, biochemistry, chem-ed, environmental, inorganic, medicinal, organic, physical
 • Crosses within Chem: Bio-X... Bio-organic, Bio-inorganic, etc
 • Cross-disciplinary fields like nanochemistry (engineering & chem)
Chemistry is science... any specific differences from other branches of science?

• Absolutely!
• Atoms are very small, so chemists tend to be detail-oriented.

• Have to rely on physical methods to garner information...
 • Until recently, could not see or manipulate individual atoms directly!
• Chemistry has developed into a HUGE science
 • Analytical, biochemistry, chem-ed, environmental, inorganic, medicinal, organic, physical
 • Crosses within Chem: Bio-X... Bio-organic, Bio-inorganic, etc
 • Cross-disciplinary fields like nanochemistry (engineering & chem)

Artificial distinctions! All boil down to how atoms interact with each other!
Ways of Knowing...

• I see chemists as being concerned with **Form** and **Function**

FUNCTION
• What are the starting and end points?
• How do we go from one point to another?
• What does it cost (think energy) to make a transformation happen?

FORM
• How do we establish structure?
• How do we know a structural change occurred during a reaction?
• Can we use what we know to build something new?

At this point, chemists have internalized the donut of science. Hopefully with the coffee of funding....
Function?

- Spectroscopy
- Electrochemical methods
- Even temperature changes!

- Math plays a big role, too.

- Kinetics vs. Thermodynamics
Function?

• Spectroscopy
• Electrochemical methods
• Even temperature changes!
• Math plays a big role, too.
• Kinetics vs. Thermodynamics

Using “thermochemical cycles, logic and math, atomic and ionic radii can be estimated…

This is using a thermometer to measure length!

https://en.wikipedia.org/wiki/Kapustinskii_equation

See also:

at
http://pubs.acs.org/doi/abs/10.1021/ed076p1570
Kinetics vs. Thermodynamics

- Reaction landscapes... every point along landscape corresponds to a different structure
- Height above sea level as a metaphor for potential energy of a structure
- Difference btw pool heights related to thermodynamics
- Lowest energy path related to kinetics (reaction rates)
Form?

- Physical Methods
 - Lotsa clever ways to connect electromagnetic phenomena with atomic and molecular behavior!
 - ROYGBIV is only the start...
 - Mass-spectrometry and related methods, too.

Too many to go through... so here’s some of my favorites

• Vibrational spectrometry
 • Infrared (heat)
 • Raman (usually visible light)

• Magnetic resonance
 • Using radio waves to talk to nuclei
 • More on this next time...

• X-Ray Crystallography
Too many to go through... so here’s some of my favorites

• Vibrational spectrometry
 • Infrared (heat)
 • Raman (usually visible light)

• Magnetic resonance
 • Using radio waves to talk to nuclei
 • More on this next time...

• X-Ray Crystallography

Important for sophomore-level college organic chemistry classes! And research.

Very important for basic science and health-related sciences!
Vibrational Spectroscopy: How do molecules move?

- Translation
- Rotation
- Vibration

Image from http://chem123chirp.chem.ubc.ca/conformation-section/

Display panel with an ethane: http://chem123chirp2.sites.olt.ubc.ca/files/2016/02/rotate-4.gif
Vibrational Spectroscopy

Vibrations are quantized... only certain frequencies allowed in any molecule. Just Hooke’s Law behavior for a pendulum of a spring.

Infrared– absorption of a photon causes the molecule’s vibration to change from one allowed rate/mode to another.
- Can use Group Theory to predict “normal modes” of molecules. Actually quite easy.

Raman – scattering of a photon (think laser) off of the electron cloud causes vibrational change.
- Photon can steal energy, so photon’s frequency increases and molecule’s vibration slows
- Photon usually leaves some energy
- Spectrum usually very similar to IR spectrum.

Vibration in water: from http://bestanimations.com/Science/Chemistry/molecules/3-molecules-vibrating.GIF
Vibration in H₂: http://phelafel.technion.ac.il/~orcohen/h2/h2.gif also see main page at http://phelafel.technion.ac.il/~orcohen/h2.html
Gas Phase Spectrum of water

NIST Chemistry WebBook (http://webbook.nist.gov/chemistry)

http://webbook.nist.gov/cgi/cbook.cgi?Spec=C7732185&Index=0&Type=IR

Rez panel with animated gif now.

Gas phase lets you see rotational fine structure....

How many waves are in a cm... Boils down to a measure of frequency
Recent computational and experimental results... Can explore vibrations of more complex objects, like gold nanoparticles.

Vibrational frequency spectra (blue bars) and VDOS (red line) of Au nanoparticles with FCC morphologies. The bottom panel displays the Au bulk VDOS calculated for an FCC crystal using the many-body Gupta potential. The VDOSs were scaled to obtain the same value after integration over the whole frequency range. On the left, the corresponding FCC morphologies are displayed.

This slide available from http://pubs.acs.org/doi/full/10.1021/jp408976f
Cool tools... Ultrafast electron diffraction

1 period = 400 femtoseconds

https://www6.slac.stanford.edu/files/ued_iiodine_gif_final.gif

DOI: 10.1103/PhysRevLett.117.153002

Rez panel with animated gif now.
An example from my lab

- Time resolved difference spectrum, fiber-optic spectroelectrochemistry.
- M-CO
- More electron rich metal centers, push e\(^-\) density into regions on the CO that weakens the C-O bond

\[[\text{Cp}^*\text{Ru}_2(\text{CO})_4]^{0/+}\text{ redox couple}\]
1.6 to 2.4 s after oxidation, 74 scans
Magnetic Resonance?

• Nuclear Magnetic Resonance!
• No radioactivity!

• Many nuclei have angular momentum = “spin”

• Spinning charge generates magnetic field.
• Can orient a little magnet with or against an external field... takes energy to flip the spin.
I expect my students to be able to draw this, so I often include hand-drawn images in my classes.
Absorption of energy because 2 states are available is the basis for a HUGE number of techniques!

Simple Energy Diagram for “Spin-Flip”
For many nuclei….

- Energy difference is very small between 2 states
- At 25°C, often have only 1 in a million excess of lower state
- Still enough to have a “bulk magnetization vector”

Can manipulate direction of this vector by applying bursts of radio waves!
Pulsed NMR experiments

- As magnetization vector rotates in x-y plane, it causes a current in the detector coil along.
- Sinusoidal signal as vector rotates and we look at projection on y-axis.

Show https://i.stack.imgur.com/rHsxs.gif
From https://mathematica.stackexchange.com/questions/115675/pulsed-nmr-animation
Overall Signal:

Show https://i.stack.imgur.com/rHxsx.gif
From https://mathematica.stackexchange.com/questions/115675/pulsed-nmr-animation
FID for CDCl$_3$ solvent

I collected this data a few years ago on our 300 MHz Varian spectrometer.

The black plot is a duplicate of blue... ignore.
Fourier Transformed 1H Data

FT takes “x” axis, and turns it into “1/x” axis

Student had forgotten to dissolve analyte... ended up just seeing what’s in the solvent
Fundamental info

• Areas under peaks
 • Tell you relative numbers of types of nuclei you’re looking at

• Position on x-axis
 • Tells you the electronic environment of specific type of nucleus

• “Couplings” or peak splittings
 • Tells you about the closest NMR-active nuclei: what type and how many of the closest

• Can tune to different channels: 1H, 2H, 11B, 13C, 15N, 19F, 29Si, 31P, 119Sn, even 195Pt… dozens more.
More Complicated Couplings: Crotonic Acid

trans-crotonic acid

vinyls

OH

CH₃
Crotonic Acid Zoom

trans-crotonic acid

methyl signals

$^3J(\text{H-H})$

$^4J(\text{H-H})$
Basic Theory

Basic Theory simplified:

→ a pulse can be expressed as the sum of sine waves

→ therefore, choosing a pulse time + delay is the same as choosing a set of frequencies to direct at sample

→ can take advantage to selectively irradiate at different frequencies, then determine effect on intensities of rest of signals.

Basis of 2-dimensional NMR!
COSY of 1-hexynenitrile (Alt-PrtSc)
HETCOR of 1-hexynenitrile

Can figure out connectivity!
NMR is basis of Magnetic Resonance Imaging

• NMR is a huge field...

• Will talk about some types of imaging methods next time.
X-Ray Crystallography... diffraction method

Diffraction:

https://upload.wikimedia.org/wikipedia/commons/thumb/0/0f/Doubleslit3Dspectrum-blue.gif/117px-Doubleslit3Dspectrum-blue.gif

Rez panel with animated gif now.

3D-lattice of atoms will result in a 3D pattern of bright spots around crystal. Use LOTS of automated math to solve

Bragg’s Law:
\[2d \sin \theta = m\lambda\]
X-Ray Diffractometer

safety light

outside

inside
Sample Data for Y_2O_3

Powder data

Gives unit cell, but no detail on what’s in the unit cell
Example diffraction pattern

X-Ray diffraction example:

https://commons.wikimedia.org/wiki/File:Zn-Mg-HoDiffraction.JPG

Pattern implies crystalline structure... an expert could tell you exact structure from the X-Ray pattern

From Wikimedia Commons, the free media repository, uploaded by MaterialScientist, see https://commons.wikimedia.org/wiki/File:Zn-Mg-HoDiffraction.JPG
Single Crystal X-Ray Diffraction

• Gives a “snapshot” of molecular structure
• Very useful when “sporting” methods like IR and NMR aren’t enough.
• Can now use for largish bio-molecules to study drug-receptor interactions

• Open source access via:
 • http://www.crystallography.net/cod/index.php
 • http://rruff.geo.arizona.edu/AMS/amcsd.php
 • http://www.rcsb.org/pdb/home/home.do

Small molecule
American Minerologist site
Protein Crystallography site
Convenient

• Can use JMOL (http://jmol.sourceforge.net/) to view "cif" files, export as X3D files
• Can use Blender to edit (remove atoms inside of other atoms) and then export as DAE files
• Can import DAE files into Second Life.

• A couple of examples (two iron structures, and a Tc cluster)
Can also import into Unity...

3NP5 structure from http://www.rcsb.org/pdb/home/home.do, Human nitric oxide synthase

4NT8 structure from RCSB site, Human hemoglobin-NO complex, Richter-Addo et al.
Thanks!

• Members and Students of the Science Circle!

• Students and Faculty of Dept. of Chem., SIUE.

• Generous support of National Science Foundation for our work on heme-nitrosyl complexes,
 NSF-CHE 1566509

• My cats for their patience...