Luna: Earth's Moon

Syzygy Asymptote / Dr. William F. Wall*

Researcher at Instituto Nacional de Astrofísica, Óptica, y Electrónica, Tonantzintla, Puebla, México

ye Millimeter Telescope Alfonso Serrano, Jul,

The side of the Moon facing the Earth (left) is very different than the side facing away (right). Why?
Photo by NASA/GSFC/Arizona State University

VFW, Cypress Falls Park, May 2018
*Observational astronomer specializing in molecular clouds in nearby galaxies.

Sefene: Eart反's Moon

Syzygy Asymptote / Dr. William F. Wall*
Researcher at Instituto Nacional de Astrofísica, Óptica, y Electrónica, Tonantzintla, Puebla, México

ye Millimeter Telescope Alfonso Serrano, Jul,

The side of the Moon facing the Earth (left) is very different than the side facing away (right). Why?
Photo by NASA/GSFC/Arizona State University

VFW, Cypress Falls Park, May 2018
*Observational astronomer specializing in molecular clouds in nearby galaxies.

Outline

.Motivation

.Lunar Basics
.Formation and Structure
.Moon's Orbit about Earth .Missions to the Moon

This image was taken on November 4th, 2017 at 4:19 am in Titusville, Florida. It shows the International Space Station (with a crew of six currently onboard) transiting the full "Beaver Moon." As International Space Station (with a crew of six currently onboard) transiting the full "Beaver Moo
the ISS orbits Earth at $17,500 \mathrm{mph}$, or roughly five miles per second, the transit lasted just 0.90 seconds.

So I decided to build a restaurant on the moon The food is great and all but there's no atmosphere.
.Future of Humanity and the Moon. Eclipse it.

Motivations:

Why is the Moon Interesting?

> Motivations:
> Why is the Moon Interesting?

1) Seasons, tides, eclipses (solar and lunar), occultations, navigation.
2) A base for exploration, for scientific experiments, for settlements.
3) To understand the formation and structure of the Earth better. Understand the past and future of the Earth.
4) Inspiration: scientific, explorational, romantic, literary, artistic, religious.

https://sputniknews.com/science/201812011070300348-russia-moon-bas

Lunar Basícs:

Orbital characteristics

.Perigee 357000 km
Apogee 405400 km
.Semi-major axis 384399 km
.Eccentricity 0.0549

.Orbital period 27.321661 d (sidereal -

Physical characteris

 .Mean radius 1737.1 km (0.27 .Flattening 0.0012 .Mass $\quad 7.342 \times 10^{22} \mathrm{~kg}(0.01$.Mean density $3.344 \mathrm{~g} / \mathrm{cm}^{3}$ or $0.606 \times$ Earth . Surface gravity 1.62 m/s² (0.1654 g)
.Escape velocity 2.38 km/s
.Sidereal rotation period 27.321661 d

Lunar Formation and Structure:

Lunar nearside with major maria and craters labeled

Topography of the Moon

- Mark A. Wieczorek - Own work

The topography of the Moon referenced to a sphere with a radius of 1737.4 kilometers. Data were obtained from the Lunar Orbiter Laser Altimeter (LOLA) that was flown on the mission Lunar Reconnaissance Orbiter (LRO). The color coded topography is displayed in two Lambert equal area images projected on the near and far side hemispheres.
(c) CC BY 3.0
© File: MoonTopoLOLA.png
(1) Created: 7 August 2010

Formation

-The prevailing hypothesis is that the Earth-Moon system formed after an impact of a Mars-sized body (named Theia) with the proto-Earth (giant impact). The mpact blasted material into末arth's orbit and then the material accreted and formed the Moon.
.The Moon's far side has a crust

Structure

.The Moon is a differentiated body. It has a geochemically distinct crust, mantle, and core.

- solid iron-rich inner core with a radius possibly as small as 240 kilometres (150 mi) and a
- fluid outer core of liquid iron with a radius of

nasa.gov

Volcanic Surface Features

 .Lunar mare- The dark and relatively featureless lunar plains, clearly seen with the naked eye, are called maria (Latin for "seas"; singular mare), as they were once believed to be filled with water;

< res restrial | ron and |
| :--- |

Vołcanic Surface Features

 .Lunar Highlands- The lighter-coloured regions of the Moon are called terrae, or more commonly highlands, because they are higher than most maria.
- They have been radiometrically dated to having formed 4.4 billion years ago, and may

Impact Craters

.Craters formed when asteroids and comets collide with the lunar surface.
.Roughly 300,000 \& than 1 km (0.6 mi) on the Moon's neara csie
.The lunar geologic prominent impact e

Topography of the Moon

- Mark A. Wieczorek - Own work

The topography of the Moon referenced to a sphere with a radius of 1737.4 kilometers. Data were obtained from the Lunar Orbiter Laser Altimeter (LOLA) that was flown on the mission Lunar Reconnaissance Orbiter (LRO). The color coded topography is displayed in two Lambert equal area images projected on the near and far side hemispheres.
(c) CC BY 3.0
© File: MoonTopoLOLA.png
(1) Created: 7 August 2010

Moon's Orbit about Earth:

Eclipses

.Eclipse shadows always have an umbra and penumbra because the sun is not a point source. An observer standing in the penumbra would con nart of the cin

https://astronomy.stackexchange.com/questions/11728/supermoon--lunar-eclipse
.From the figure above, it's obvious that lunar or solar eclipses cannot occur every month, because the Moon's orbital plane around the Earth is inclined to the ecliptic (the Earth's orbit around the sun). Only when the a New Moon or Full Moon occurs in the

Eclipses

Lunar eclipses occur as the moon passes through Earth's shadow. It can pass through the outer, fainter shadow, called the penumbra. When it passes into the umbra, we can get either a partial or total lunar eclips depending on how much of the moon crosses into it. (CBC)

Lunar eclipses occur from 2 to 5 times per year although they're not During total lunar eclipses, the Moon is bathed in a dark red light, du A lunar observer during a total lunar eclipse would see a bright red ri

Solar eclipses occur roughly 2-3 times per year (though not neces

SUPERMOON!!

.Major axis of Moon's orbit seldom aligns with Earth-Sun direction. When it does, you can have a full Moon at apogee or at perigee. When the latter occurs you have a supermonn

A comparison of a "normal" Moon and a Supermoon.

TIDES-
 Differential Gravitational Force

.Force of gravity falls off with distance $\left(1 / r^{2}\right)$, which means the near side of one body is pulled more strongly by its orbiting partner than its far side (e.g., Moon on Earth and vice versa). This pulls both bodies into egg-like shapes.

Copyright © 2005 Pearson Prentice Hall, Inc.

TIDES-
 Differential Gravitational Force

.Tidal Locking: Only one lunar face is towards us on the Earth. Remember that the Moon is pulled into an egg-shape by tidal forces.

- If the Moon were rotating with respect to the Earth-Moon line, the egg-shaped bulging would move around throughout the Moon's interior, thereby generating heat because of internal friction.
. That heat dissipated the Moon's rotational kinetic energy, resulting in its current tidally locked state.
- Roll a rubber ball around between your hands. Flatten the ball while doing so. The ball heats up as internal friction dissipates the kinetic enerav from vour hands.

The Moon Stabilizes the Earth's Rotational Axis

.The Moon is in a stable orbit and pulls on the Earth's equatorial bulge, thereby keeping the Earth's rotational axis from wandering too far during its usual precession. (Like having a spinning top that is extra wide - it's more stable.)

- This keeps the obliquity of the ecliptic confined to a narrow range (22.1-24.5), minimizing seasonal extremes in climate.
- Earth is more suitable for life than it would be otherwise.

Easter

(Gregorian Calendar)

.Easter is the first Sunday after the first full Moon that occurs on, or after, the March equinox between 2:
"Astronomi
Divide
the year x
the year x
b
$b+8$
$b-f+1$
$19 a+b-d-g+15$
c
$32+2 e+2 i-h-k$
$a+11 h+221$
$h+1-7 m+114$

by	Quotient	Remainder
19	-	a
100	b	c
4	d	e
25	f	-
3	g	-
30	-	h
4	i	k
7	-	1
451	m	-
31	n	p
month (3 = March, $4=$ April),		
(3		

ᄅeus, lethod for ar.

Missions to the

 Moon:| 15/2019 | | List of missions to the Moon - Wikipedia | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Spacecraft | Launch date ${ }^{[1]}$ | Carrier rocket ${ }^{[2]}$ | Operator | Mission type | Outcome |
| $\frac{\text { Pioneer 0 }}{\left.(\text { Able } 1)^{3}\right]^{\prime}}$ | 17 August 1958 | Thor DM-18 Able [${ }^{[3]}$ | 三 USAF | Orbiter | Launch failure |
| | First attempted launch beyond Earth orbit; failed to orbit due to turbopump gearbox malfunction resulting in first stage explosion. ${ }^{[3]}$ Reached apogee of 16 kilometres $\left(9.9\right.$ mi). ${ }^{[4]}$ | | | | |
| Luna E-1 No. 1 | 23 September 1958 | Luna | - $\mathrm{OKB}^{\text {-1 }}$ | Impactor | Launch failure |
| | Failed to orbit, rocket disintegrated due to excessive vibration. ${ }^{[3][]]}$ | | | | |
| $\frac{\text { Pioneer } 1}{\left.(A \text { ble } \\|)^{3}\right)^{3}}$ | 11 October 1958 | Thor DM-18 Able [${ }^{[3]}$ | \# NASA | Orbiter | Launch failure |
| | Failed to orbit, premature second stage cutoff due to accelerometer failure. Later known as Pioneer $1,[3]$ Reached apogee of 113,800 kilometres ($70,700 \mathrm{mi})^{[6]}$ | | | | |
| Luna E-1 No. 2 | 11 October 1958 | Luna | - OK8-1 | Impactor | Launch failure |
| | Failed to orbit carrier rocket exploded due to excessive vibration. ${ }^{[3][1]}$ | | | | |
| Pioneer 2
 (Able lii | 8 November 1958 | Thor DM-18 Able ! | NASA | Orbiter | Launch failure |
| | Failed to orbit; premature second stage cutoff due to erroneous command by ground controllers; third stage failed to ignite due to broken electrical connection. ${ }^{[3]}$ Reached apogee of 1,550 kilometres (960 mi). ${ }^{[7]}$ | | | | |
| Luna E-1 No. 3 | 4 December 1958 | Luna | - ${ }^{\text {OKB-1 }}$ | Impactor | Launch failure |
| | Failed to orbit, seal failure in hydrogen peroxide pump cooling system resulted in core stage underperformance. ${ }^{[315]}$ | | | | |
| Pioneer 3 | 6 December 1958 | Junoll | \#NASA | Flyby | Launch failure |
| | Failed to orbit, premature first stage cutoff. ${ }^{[3]}$ Reached apogee of 102,360 kilometres (63,600 mi) ${ }^{[8]}$ | | | | |
| $\frac{\text { Mechta }}{(E-1 \text { No.4) }}$ | 2 January 1959 | Luna | - OKB-1 | Impactor | Launch failure |
| | Carrier rocket guidance problem resulted in failure to impact Moon, flew past in a heliocentric orbit, later known as Luna $1{ }^{[9]}$ Closest approach 5,995 kilometres ($3,725 \mathrm{mi}$) on 4 January. ${ }^{[10]}$ | | | | |
| Pioneer 4 | 3 March 1959 | Junoll | ENASA | Flyby | Partial failure |
| | Second stage overperformance resulted in flyby at greater altitude than expected. out of instrument range, with 58,983 kilometres (36,850 mi) of distance ${ }^{[9]}$ Closest approach at 22:25 UTC on 4 March. First U.S. spacecraft to leave Earth orbit. ${ }^{[11]}$ | | | | |
| E-1A No. 1 | 18 June 1959 | Luna | - ${ }^{\text {OKB-1 }}$ | Impactor | Launch failure |
| | Failed to orbit, guidance system malfunction.[9] | | | | |
| Luna 2
 (E-1ANo.2) | 12 September 1959 | Luna | - ${ }_{\text {OKB-1 }}$ | Impactor | Successful |
| | Successful impact at 21:02 on 14 September 1959. First spacecraft to reach lunar surface. ${ }^{[12]}$ | | | | |
| $\frac{\text { Luna } 3}{(E-2 A N o .1)}$ | 4 October 1959 | Luna | - OKB-1 $^{\text {a }}$ | Flyby | Successful |
| | Returned first images of the far side of the Moon. ${ }^{[13]}$ | | | | |
| Pioneer P-3
 Able IVB | 26 November 1959 | Atlas-D Able | NASA | Orbiter | Launch failure |
| | Failed to orbit $\mathrm{c}^{[14]}$ payload fairing disintegrated due to design faut. ${ }^{[9]}$ | | | | |
| Luna E-3 No. 1 | 15 April 1960 | Luna | - OKB-1 | Flyby | Launch failure |
| | Failed to orbit, premature third stage cutoff. ${ }^{[15]}$ | | | | |
| Luna E-3 No. 2 | 16 April 1960 | Luna | - ${ }^{\text {OKB-1 }}$ | Flyby | Launch failure |
| | Failed to orbit, rocket disintegrated ten seconds after launch. ${ }^{[15]}$ | | | | |
| Pioneer P-30
 (Able VA) | 25 September 1980 | Atlas-D Able | ENASA | Orbiter | Launch failure |
| | Failed to orbit, second stage oxidiser system mallunction resulting in premature cutoff.[16][15] | | | | |
| Pioneer P-31 (Able VB) | 15 December 1960 | Atlas-D Able | NASA | Orbiter | Launch failure |

[^0]219

4/15/2018					
Spacecraft	Launch date ${ }^{[1]}$	Carrier rocket ${ }^{[2]}$	Operator	Mission type	Outcome
$\frac{\text { Ranger } 3}{(\mathrm{P}-34)}$	Failed to orbit, exploded 68 seconds after launch, at an altitude of 12.2 kilometres $(7.8 \mathrm{mi})$. Second stage ignited while first stage was still attached and burning.[17][15]				
	26 January 1962	Atlas LV-3 Agena-B	\# NASA	Impactor	Spacecraft failure
	Partial launch failure due to guidance problem; attempt to correct using spacecraft's engine resulted in it missing the Moon by 36,793 kilometres $\left(22,862\right.$ mi) [${ }^{18][19]}$				
$\frac{\text { Ranger } 4}{(P-35)}$	23 April 1982	Atlas LV-3 Agena-B	\#NASA	Impactor	Spacecrat failure
	Failed to deploy solar panels, ran out of power ten hours after launch; incidental impact on the far side of the Moon on 28 April. [18]20]				
$\frac{\text { Ranger } 5}{(P-36)}$	18 October 1962	Atlas LV-3 Agena-B	\#NASA	Impactor	Spacecraft failure
	Solar panels erroneously disengaged from power system, failed $8^{3} / 4 /$ hours after launch when batteres were depleted. ${ }^{[18]}$ Missed the Moon as course correction was not completed. [21]				
Luna E-8 No. 2	4 January 1883	Molniya-L	- OKB-1 1	Lander	Launch failure
	Failed to depart Low Earth orbitit ${ }^{221]}$ guidance system power failure prevented upper stage ignition. ${ }^{[23]}$				
Luna E-6 No. 3	3 February 1963	Molniya-L	- $\mathrm{OKB}^{\text {-1 }}$	Lander	Launch failure
	Failed to orbit, guidance failure [23]				
$\frac{\text { Luna } 4}{(E-6 \text { No.4) }}$	2 April 1963	Molniya-L	- OKB-1 $^{\text {a }}$	Lander	Spacecraft failure
	Failed to perform mid-course correction. ${ }^{[23]}$ remained in high Earth orbit until given escape velocity by orbitalperturbation. ${ }^{[24]}$				
$\begin{aligned} & \text { Ranger } 6 \\ & (P-54) \end{aligned}$	30 January 1864	Atlas LV-3 Agena-B	ENASA	Impactor	Spacecraft failure
	Impacted on 2 February 1964, failed to return images due to power system failure..[25][26]				
Luna E-6 No.e	21 March 1964	Molniya-M	- OKB-1 $^{\text {a }}$	Lander	Launch failure
	Failed to orbit, third stage underperformed due to oxidiser valve failure. ${ }^{\text {[25] }}$				
Luna E-6 No. 5	20 April 1964	Molniya-M	- $\square_{\text {OKB-1 }}$	Lander	Launch failure
	Failed to orbit, power failure caused by broken connection resulted in premature third stage cutoff. ${ }^{\text {25] }}$				
Ranger 7	28 July 1964	Atlas LV-3 Agena-B	\#NASA	Impactor	Successful
	Impacted on 30 July 1884 at 13:25:48 UTC [27]				
Ranger 8	17 February 1965	Atlas LV-3 Agena-B	\# NASA	Impactor	Successful
	Impacted on 20 February 1885 at 09:57:37 UTC.[[28\|[29]				
$\frac{\text { Kosmos } 60}{\left(E-6 \mathrm{No}^{2}\right)}$	12 March 1985	Molniya-L	Lavochkin	Lander	Launch failure
	Upper stage failed to restart due to guidance system shor-cirevit. ${ }^{[28]}$ Failed to depart low Earth orbit. ${ }^{[30]}$				
Ranger 9	21 March 1985	Atlas LV-3 Agena-B	르NASA	Impactor	Successful
	Impacted on 24 March 1985 at 14:08:20 UTC [28]33]				
Luna E-6 No. 8	10 April 1865	Molniya-L		Lander	Launch failure
	Third stage failed to ignite due to loss of oxidiser pressure, failed to orbi. [28]				
$\frac{\operatorname{Luna} 5}{(E-\mathbb{N} 0.10)}$	9 May 1985	Molniya-M	Lavochkin	Lander	Spacecraft failure
	Loss of control after gyroscope malfunction, ${ }^{[28]}$ failed to decelerate for landing and impacted the Moon at $19: 10$ UTC on 12 May 1985. ${ }^{[32]}$				

Spacecraft	Launch date ${ }^{[1]}$	Carrier rocket ${ }^{[2]}$	Operator	Mission type	Outcome
$\frac{\text { Luna } 6}{(E-6 \text { No. } 7}$	8 June 1965	Molniya-M	Lavochkin	Lander	Spacecrat failure
	Engine failed to shut down after performing mid-course correction manoeuvre. ${ }^{[28]}$ flew past the Moon in a heliocentric orbit. ${ }^{\text {[33] }}$				
$\frac{\text { Zond } 3}{(3 \mathrm{MN}-4 \mathrm{No} .3)}$	18 July 1965	Molniya	Lavochkin	Flyby	Successful
	Flew past the Moon on 20 July 1965 at a distance of 9,200 kilometres (5,700 mi) ${ }^{[34]}$ Conducted technology demonstration for future planetary missions. ${ }^{\text {[28] }}$				
$\frac{\operatorname{Luna} 7}{(\mathbb{E}-6 \mathrm{No} .11)}$	4 October 1985	Molniya	Lavochkin	Lander	Spacecraft failure
	Attitude control failure shortly before landing prevented controlled descent; impacted the lunar surface 22:08:24 UTC on 7 October 1965. ${ }^{[28 / 3 / 35]}$				
$\frac{\text { Luna } 8}{(E-6 \text { No. } 12)}$	3 December 1965	Molniya		Lander	Spacecraft failure
	Landing airbag punctured, resulting in loss of attitude control shortly before planned touchdown, ${ }^{[28]}$ impacted Moon on 6 December 1965 at 21:51:30 UTC. [36]				
$\frac{\text { Luna 9 }}{(\mathrm{E}-6 \mathrm{No.13)}}$	31 January 1966	Molniya-M	Lavochkin	Lander	Successful
	First spacecraft to land successfully on the Moon. Touchdown on 3 February 1966 at 18:45:30 UTC [37] Returned data until 6 February at $22: 55$ UTC. ${ }^{[38]}$				
$\frac{\text { Kosmos 111 }}{\text { (E-6S No. 204) }}$	1 March 1966	Molniya-M		Orbiter	Launch failure
	Upper stage lost atititue control and failed to ignite ${ }^{[33]}$ spaceeraft never left low Earth orbit ${ }^{[39]}$				
$\frac{\text { Luna } 10}{(E-8 S N o .208)}$	31 March 1886	Molniya-M	Lavochkin	Orbiter	Successful
	Entered orbit at 18:44 UTC on 3 April 1966, becoming the first spacecraft to orbit the Moon. ${ }^{[40]}$ Continued to return data until 30 May ${ }^{[38]}$				
Surveyor 1	30 May 1986	Atlas LV-3C Centaur-D	\# NASA	Lander	Successful
	Landed in Oceanus Procellarum on 2 June 1968 at 00:17:38 UTC [[38] Returned data until loss of power on 13 July. ${ }^{[41]}$				
Explorer 33 (AMP-D)	1 July 1986	Delta E1	ENASA	Orbiter	Launch failure
	Magnetospheric probe: rocket imparted greater velocity than had been planned, leaving spacecraft unable to enter orbit. ${ }^{[38]}$ Repurposed for Earth orbit mission which was completed successfully. ${ }^{[42]}$				
Lunar Orbiter 1	10 August 1966	Atlas SLV-3 Agena-D	=NASA	Orbiter	Partial failure
	Orbital insertion at around 15:36 UTC on 14 August. Deorbited early due to lack of fuel and to avoid communications interference with the next mission, impacted the Moon at 13:30 UTC on 29 October 1966. [43]				
$\frac{\frac{\text { Luna } 11}{(E-6 L F ~ N o . ~ 101) ~}}{}$	21 August 1968	Molniya-M		Orbiter	Partial failure ${ }^{[3]}$
	Entered orbit on 28 August 1986. Failed to return images; other instruments operated correcty. ${ }^{[38]}$ Conducted gamma ray and X-ray observations to study the composition of the Moon, investigated the lunar gravitational field, the presence of meteorites in the lunar environment and the radiation environment at the Moon. Ceased operations on 1 October 1968 after power was depleted. [44]				
Surveyor 2	20 September 1966	Atlas LV-3C Centaur-D	\#NASA	Lander	Spacecraft failure
	One thruster failed to ignite during mid-course correction manoeuvre resulting in loss of control ${ }^{[38]}$ Impacted the Moon at 03:18 UTC on 23 September 1966. ${ }^{[45]}$				
$\frac{\text { Luna } 12}{(\text { E-ELF No. 102) }}$	22 October 1986	Molniya-M	Lavochkin	Orbiter	Successful

Spaceeraft	Launch date ${ }^{[1]}$	Carrier rocket ${ }^{[2]}$	Operator	Mission type	Outcome
Lunar Orbiter 2	Entered orbit on 25 October 1966 and returned data until 19 January $1967{ }^{[46]}$ Completed photography mission intended for Luna 11. ${ }^{[38]}$				
	6 November 1988	Atlas SLV-3 Agena-D	\#NASA	Orbiter	Successful
	Entered orbit at about 19:51 UTC on 10 November 1966 to begin photographic mapping mission. Impacted on the far side of the lunar surface following deorbit burn on 11 October 1867 at end of mission. ${ }^{[47]}$				
$\frac{\text { Luna } 13}{(E-6 \mathrm{M} \text { No 205) }}$	21 December 1968	Molniya-M	Lavochkin	Lander	Successful
	Successfully landed in Oceanus Procellarum at 18:01 UTC on 24 December $19866^{[38]}$ Returned images from the surface and studied the lunar soii. [48] Operated until depletion of power at 06:31 UTC on 28 December.[38]				
Lunar Orbiter 3	5 February 1967	Atlas SLV-3 Agena-D	\# NASA	Orbiter	Successful
	Entered orbit at 21:54 UTC on 8 February 1967. Deorbited at end of mission and impacted the Moon on 8 October 1967.[49]				
Surveyor 3	17 April 1967	Atlas LV-3C Centaur-D	\# NASA	Lander	Successful
	Landed at 00:04 UTC on 20 April 1987 and operated until 3 May ${ }^{[50 \mid[5]]}$ Visited by Apollo 12 astronauts in 1968 . with some parts removed for return to Earth. ${ }^{[52]}$				
Lunar Oroiter 4	4 May 1967	Atlas SLV-3 Agena-D	\# NASA	Orbiter	Successful
	Entered orbit at 21:54 UTC on 8 May 1987, operated until 17 July. Decayed from orbit, with lunar impact occurring on 6 October 1967. [50][53]				
Surveyor 4	14 July 1987	Atlas LV-3C Centaur-D	= NASA	Lander	Spacecratt failure
	Contact with spacecraft lost at 02:03 UTC on 17 July, two and a half minutes before scheduled landing. ${ }^{[50]}$ NASA determined that the spacecraft may have exploded, otherwise it impacted the Moon. ${ }^{\text {[54] }}$				
$\frac{\text { Explorer } 35}{(A M P-E)}$	19 July 1987	Delta E1	\#NASA	Orbiter	Successful
	Magnetospheric probe, studying the Moon and interplanetary space. Deactivated on 27 June 1973. [55] Presumed to have impacted the Moon during the 1970s. ${ }^{[56]}$				
Lunar Orbiter 5	1 August 1987	Atlas SLV-3 Agena-D	\# NASA	Orbiter	Successful
	Final mission in the Lunar Orbiter series, entered selenocentric orbit on 5 August at 18:48 UTC and conducted a photographic survey until 18 August. Deorbited and impacted the Moon on 31 January 1968.[57]				
Surveyor 5	8 September 1987	Atlas SLV-3C Centaur-D	\#NASA	Lander	Successful
	Landed in Mare Tranquiliitatic at 00:46:44 UTC on 11 September. Last signals received at 04:30 UTC on 17 December 1967. ${ }^{[58]}$				
$\frac{\text { Soyuz 7K-L1 }}{\text { No.4L }}$	27 September 1967	Proton-K/D		Flyby	Launch failure
	Technology demonstration for planned manned missions. Failed to reach orbit after a blocked propellant line caused one of the first stage engines to not ignite. [50]				
Surveyor 6	7 November 1967	Atlas SLV-3C Centaur-D	ENASA	Lander	Successful
	Landed in Sinus Mediia at 01:01:04 UTC on 10 November. $\left.{ }^{[50]}\right]$ Made brief flight from lunar surface at 10:32 UTC on 17 November, followed by second landing after travelling 2.4 metres (7 ft 10 in). Last contact at 19:14 UTC on 14 December[${ }^{[59]}$				
$\frac{\text { Soyuz } 7 \mathrm{~K}-\mathrm{L1}}{\text { No.5L }}$	22 November 1987	Proton-K/D	Lavochkin	Flyby	Launch failure
	Technology demonstration for planned manned missions; unable to achieve orbit after second stage engine failed to ignite. ${ }^{[50]}$				
Surveyor 7	7 January 1968	Atlas SLV-3C Centaur-D	\# NASA	Lander	Successful
	Final Surveyor mission. ${ }^{[60]}$ Landed 29 kilometres (18 mi) from Tycho crater at 01:05:36 UTC on 10 January.Operated until 21 February $1968 .^{[61]}$				

Spacecraft	Launch date ${ }^{[1]}$	Carrier rocket ${ }^{[2]}$	Operator	Mission type	Outcome
Luna E-6LS No. 112	7 February 1988	Molniya-M	Lavochkin	Orbiter	Launch failure
	Failed to orbit after third stage ran out of fuel. ${ }^{[61]}$				
$\frac{\text { Luna } 14}{(E-6 L S N o .113)}$	7 April 1988	Molniya-M		Orbiter	Successful
	Tested communications for proposed manned missions and studied the mass concentration of the Moon. Entered orbit on 10 April at 19:25 UTC. [62]				
$\frac{\text { Soyuz 7K-L1 }}{\text { No. } 7 \mathrm{~L}}$	22 April 1968	Proton-K/D		Flyby	Launch failure
	Technology demonstration for planned manned missions. Failed to orbit after second stage engine incorrectly commanded to shut down. Spacecraft was recovered using its prototype launch escape system. ${ }^{[61]}$				
Zond 5 (7K-L1 No.9L)	14 September 1968	Proton-KID	Lavochkin	Flyby, circled	Successful
	Two tortoises and other life forms on board a technology demonstration for planned manned missions. Made a closest approach of 1.850 kilometres (1.150 mi) on 18 September, and circled the Moon before returning to Earth. Landed in the Indian Ocean on 21 September at 16:08 UTC, becoming the first Lunar spacecraft to be recovered successfully and carried the first Earth life to travel to and around the Moon. ${ }^{\text {[63] }}$				
$\frac{\text { Zond } 6}{(7 \mathrm{~K} \text { L1 No. 12L) }}$	10 November 1988	Proton-K/D		Flyby	Spacecraft failure
	Technology demonstration for planned manned missions. Flyby occurred on 14 November, with a closest approach of 2.420 kilometres ($1,500 \mathrm{mi}$) ${ }^{[64]}$ Reentered Earth's atmosphere on 17 November; however, recovery was unsuccessful after parachutes were prematurely jettisoned. ${ }^{[61]}$				
Apollo 8	21 December 1988	Saturn V	ENASA	Manned orbiter	Successful
	First manned mission to the Moon; entered orbit around the Moon with four-minute burn beginning at 09:59:52 UTC on 24 December. Completed ten orbits of the Moon before returning to Earth with an engine burn at 06:10:18 UTC on 25 December. Landed in the Pacific Ocean at 15:51 UTC on 27 December. [65]				
$\begin{aligned} & \text { Soyuz 7K-L1 } \\ & \text { No. } 13 \mathrm{~L} \end{aligned}$	20 January 1969	Proton-K/D		Flyby	Launch failure
	Technology demonstration for planned manned missions. Failed to orbit after one of the four second stage engines shut down prematurely. Third stage engine also shut down prematurely. The spacecraft was recovered using its launch escape system. [66]				
$\frac{\text { Luna } \mathrm{E}-8}{\mathrm{No} \text { o. } 201}$	19 February 1969	Proton-K/D		Lander/rover	Launch failure
	First launch of the Lunokhod rover. Launch vehicle disintegrated 51 seconds after launch and exploded. ${ }^{[66]}$				
$\frac{\text { Soyuz 7K-L1S }}{\text { No. } 3}$	21 February 1969	N1	- OKB-1	Orbiter	Launch failure
	First launch of N 1 rocket; intended to orbit the Moon and return to Earth. First stage prematurely shut down 70 seconds after launch; launch vehicle crashed 50 kilometres (31 mi) from launch site. Spacecraft landed some 35 kilometres (22 mi) from the launch pad after suocessfully using its launch escape system. ${ }^{[66]}$				
Apollo 10	18 May 1969	Saturn V	ENASA	Manned orbiter	Successful
	Dress rehearsal for Apollo 11. Lunar Module with two astronauts on board descended to a distance of 14.328 kilometres (8.802 mi) above the lunar surface. ${ }^{[6]]}$				
$\frac{\text { Luna E-8-5 }}{\text { No. } 402}$$\text { No. } 402$	14 June 1969	Proton-K/D		Sample return	Launch failure
	Intended to land on the Moon and return lunar soil sample. Did not reach Earth orbit after fourth stage failed to ignite. [66]				
Soyuz 7K-L1S	3 July 1989	N1	- OKB-1	Orbiter	Launch failure

Spacecraft	Launch date ${ }^{[1]}$	Carrier rocket ${ }^{[2]}$	Operator	Mission type	Outcome
	Intended to orbit the Moon and return to Earth. All first stage engines shut down 10 seconds after launch: launch vehicle crashed and exploded on the launch pad. Spacecraft landed safely 2 kilometres (1.2 mi) from the launch site after using launch escape sequence. ${ }^{\text {[6] }}$				
$\frac{\text { Luna } 15}{(E-8.5 \mathrm{No} .4011)}$	13 July 1969	Proton-K/D	Lavochkin	Sample return	Spacecraft failure
	Reached lunar orbit at 10:00 UTC on 17 July. Descent retro-rocket burn started at 15:47 UTC on 21 July. Contact lost 3 minutes after de-orbit burn; probably crashed on the Moon. ${ }^{\text {[66] }}$				
Apollo 11	18 July 1968	Saturn V	可NASA	Manned orbiterlander	Successful
	First manned landing on the Moon. The Apollo Lunar Module (LM) Eagle landed at 20:17 UTC on 20 July 1969.				
$\begin{aligned} & \text { Zond 7 } \\ & \text { (7K-LINo.11L) } \end{aligned}$	7 August 1969	Proton-KJD		Flyby	Successful
	Technology demonstration for planned manned missions. Lunar fiyby on 10 August, with a closest approach of 1,200 kilometres (750 mi): returned to Earth and landed in Kazakhstan at 18:13 UTC on 14 August. ${ }^{[66]}$				
$\frac{\text { Kosmos } 300}{(E-8.5 \text { No. } 403)}$	23 September 1969	Proton-K/D		Sample return	Launch failure
	Third attempt at lunar sample return. After reaching low Earth orbit, the fourth stage engine failed to fire for trans-lunar injection due to oxidiser leak. Spacecraft re-entered Earth's atmosphere about 4 days after launch. ${ }^{[66]}$				
$\frac{\text { Kosmos } 305}{(E-8.5 \text { No.404) }}$	22 October 1969	Proton-K/D		Sample return	Launch failure
	Fourth attempt at lunar sample return. After reaching low Earth orbit, the fourth stage engine failed to fire for trans-lunar injection due to control system malfunction. Spacecraft re-entered Earth's atmosphere within one orbit after launch. ${ }^{[66]}$				
Apollo 12	14 November 1969	Saturn V	\#\#NASA	Manned orbiter/lander	Successful
	Second manned lunar landing.				
$\begin{aligned} & \text { Luna E-8-5 } \\ & \hline \text { No. } 405 \\ & \hline \end{aligned}$	6 February 1970	Proton-K/D		Sample return	Launch failure
	Failed to orbit.				
Apollo 13	11 April 1970	Saturn V	프NASA	Manned orbiterlander	Spacecraft failure
	Lunar landing aborted following Service Module oxygen tank explosion enroute to the Moon; flew past the Moon (free-return trajectory) and returned the crew safely to Earth.				
$\frac{\text { Luna } 16}{(E-8.5 \mathrm{~N} .408)}$	12 September 1970	Proton-K/D	Lavochkin	Sample return	Successful
$\begin{aligned} & \frac{\text { Zond } 8}{(7 \mathrm{~K} \text { L1 No. 14LL) }} \end{aligned}$	20 October 1970	Proton-K/D	Lavochkin	Flyby	Successful
	Technology demonstration for planned manned missions: returned to Earth successfully.				
$\frac{\text { Luna } 17}{(E-8 \text { No 203) }}$	10 November 1970	Proton-K/D	Lavochkin	Landerlrover	Successful
	Deployed Lunokhod 1.				
Apollo 14	31 January 1971	Saturn V	프NASA	Manned Orbiter/Lander	Successful
	Third manned lunar landing.				
Apollo 15	28 July 1971	Saturn V	\#NASA	Manned orbiter/lander/rover	Successful

4/15/2018

Lst of missions to the Moon - Wikipedia			
Spacecraft	Launch date ${ }^{[1]}$	Carrier rocket ${ }^{[2]}$	Operator

4/15/2018
List of missions to the Moon - Wikipecia

Spacecraft	Launch date ${ }^{[1]}$	Carrier rocket ${ }^{[2]}$	Operator

Spacecraft	Launch date ${ }^{[1]}$	Carrier rocket ${ }^{[2]}$	Operator	Mission type	Outcome
$\begin{aligned} & \text { Hiten } \\ & \text { (MUSES-A) } \end{aligned}$	24 January 1990	Mu-3S-II	- ISAS	Flyby/Orbiter	Successful
	Designed for flyby. placed into selenocentric orbit during extended mission after failure of Hagoromo. Deorbited and impacted in USGS quadrangle LQ27 on 10 April 1993 . ${ }^{[70]}$				
Hagoromo	24 January 1990	Mu-3s-11 http	ttps://en.wikipedia.org/wiki/Selenocentric_orbi		
	Deployed from Hiten. Communications failure: entered selenocentric orbit but returned no data.				
Geotail	24 July 1992	Delta \|l 8925	ISAS/NASA	Gravity assist	Successful
	Series of flybys to regulate high Earth orbit.				
WIND	1 November 1994	Delta II 7925-10	\#NASA	Gravity assist	Successful
	Made two fybys on 1 December 1994 and 27 December 1994 to reach the Earth-Sun L1 Lagrangian point.				
$\frac{\text { Clementine }}{(\text { DSPSE })}$	25 January 1994	$\frac{\text { Titan II (23)G Star- }}{37 F \mathrm{M}}$	USAFNASA	Orbiter	Successful
	Completed Lunar objectives successfully failed following departure from selenocentric orbit				
HGS-1	24 December 1997	Proton-K/DM3	EHughes	Gravity assist	N/A
	Communications satellite: made two flybys in May and June 1998 en route to geosynchronous orbit after delivery into wrong orbit.				
Lunar $\frac{\text { Prospector }}{\text { (Discovery 3) }}$	7 January 1988	Athena II	\# NASA	Orbiter	Successful
Nozomi (PLANET-8)	3 July 1998	M-V	- ISAS	Gravity assist	Spacecratt failure
	Two fiybys en route to Mars.				
WMAP	30 June 2001	Delta II $7425-10$	NASA	Gravity assist	Successful
	Flyby on 30 July 2001 to reach the Earth-Sun L2 Lagrangian point.				
SMART-1	27 September 2003	Ariane 5G	- ® $_{\text {ESA }}$	Orbiter	Successful
	Impacted moon in USGS quadrangle LQ26 at end of mission on 3 September 2006.				
STEREO A	25 October 2006	Delta Il $7925-10 \mathrm{~L}$	NASA	Gravity assist	Successful
	Flyby on 15 December 2000 to enter a heliocentric orbit.				
STEREO B	25 October 2006	Delta II 7925-10L	NASA	Gravity assist	Successful
	Made two flybys on 15 December 2000 and 21 January 2007 to enter a heliocentric orbit.				
ARTEMIS P1	17 February 2007	Delta \|17925	ENASA	Orbiter	Operational
	THEMIS spacecraft moved to selenocentric orbit for extended mission; entered orbit July 2011.				
ARTEMIS P2	17 February 2007	Delta 117925	\#NASA	Orbiter	Operational
	THEMIS spaceeraft moved to selenocentric orbit for extended mission; entered orbit July 2011.				
$\frac{\text { SELENE }}{(\text { Kaguya })}$	14 September 2007	H-11A 2022	- JAXA	Orbiter	Successful
	Impacted the Moon in USGS quadrangle LQ30 at end of mission on 10 June 2009.[7]				
$\frac{\text { Okina }}{(\text { RSAT })}$	14 September 2007	H-IIA 2022	- JAXA	Orbiter	Successful
	Deployed from Kaguya, decayed and impacted Moon in USGS quadrangle LQ08 on 12 February 2009 after end of mission.				
$\frac{\text { Ouna }}{(\text { VRAD })}$	14 September 2007	H-11A 2022	- Jaxa	Orbiter	Successful
	Deployed from Kaguya, completed operations on 29 June 2009 ${ }^{[72]}$ but remains in selenocentric orbit.				
Chang'e 1	24 October 2007	Long March 3A	CNSA	Orbiter	Successful

4/15/2019	List of missions to the Moon - Wikipedia				
Spacecraft	Launch date ${ }^{[1]}$	Carrier rocket ${ }^{[2]}$	Operator	Mission type	Outcome
Chandrayaan-1	Impacted Moon in USGS quadrangle LQ21 on 1 March 2009, at end of mission.				
	21 October 2008	PSLV-XL	=isRO	Orbiter	Mostly successful
	Succeeded through mission, terminated the mission in 2009 , remains in selenocentric orbit; discovered water on Moon. ${ }^{[73]}$				
Moon Impact Probe	21 October 2008	PSLV-XL	= ISRO	Impactor	Successful
	Deployed from Chandrayaan-1, impacted Moon in USGS quadrangle LQ30 on 14 November 2008.				
Lunar Reconnaissance Orbiter	18 June 2009	Atlas V401	\#NASA	Orbiter	Operational
LCROSS	18 June 2009	Atlas V401	\#NASA	Impactor	Successful
	Observed impact of Centaur upper stage that launched it and LRO, then impacted itself. Impacts in USGS quadrangle LQ30.				
Chang'e 2	1 October 2010	Long March 3C	- CNSA	Orbiter	Successful
	Following completion of six month Lunar mission, departed selenocentric orbit for Earth-Sun L2 Lagrangian point: $:^{[74]}$ subsequently flew by asteroid 4179 Toutatis. ${ }^{[75]}$				
$\frac{E b b}{\left(G P_{A N L L A}\right)}$	10 September 2011[${ }^{[6] / 77]}$	Delta 117920 H	\#NASA	Orbiter ${ }^{[78]}$	Successful
	Part of the Gravity Recovery and interior Laboratory. ${ }^{[88]}$ impacted the Moon in USGS quadrangle LC01 on 17 December 2012 at end of mission. ${ }^{[79]}$				
$\frac{\text { Flow }}{(\text { GRadl-B) }}$	10 September 2011 ${ }^{[76[7]}$	Delta 117920 H	ENASA	Oriter ${ }^{[8]}$	Successful
	Part of the Gravity Recovery and Interior Laboratory. [78] impacted the Moon in USGS quadrangle LQ01 on 17 December 2012 at end of mission. ${ }^{[79]}$				
LADEE	7 September 2013	Minotaur V	ENASA	Orbiter	Successful
	Mission ended on 18 April 2014, when the spacecraft's controllers intentionally crashed LADEE into the far side of the Moon.				
Chang'e 3	1 December 2013	Long March 3 B	CNSA	Lander	Operational
	Entered orbit on 6 December 2013 with landing at 13:12 UTC on 14 December.				
Yutu	1 December 2013	Long March 3B	- CNSA	Rover	Mostly successful
	Deployed from the Chang'e 3 lander, which landed on the Moon.				
Chang'e 5-T1	23 October 2014	Long March 3 3 C	- CNSA	Flyby	Operational
	Demonstration of re-entry capsule for Chang'e 5 sample-return mission at lunar return velocity.				
Manfred Memorial Moon Mission	23 October 2014	Long March 3C	${ }_{\text {LuxSpace }}$	Flyby	Successful
	Attached to third stage of $\mathrm{CZ}-3 \mathrm{C}$ used to launch Chang'e 5-T1.				
TESS	18 April 2018	Falcon 9 Full Thrust	ENASA	Gravity assist	Successful
	Flyby on 17 May 2018 to designated high Earth orbit. ${ }^{[80]}$				
Queqiao	21 May 2018	Long March 4C	\square CNSA	$\begin{aligned} & \text { Gravity assist/ / } L_{2} \\ & \text { orbit } \end{aligned}$	Operational
	Entered designated Earth-Moon \underline{L}_{2} orbit on June 14 in preparation of Chang'e 4 far-side lunar lander in December 2018.				
Longjiang-1	21 May 2018	Long March 4C	- CNSA	Orbiter	Spacecraft failure
	Launched on the same rocket as Queqias and Longjiang-2 but it never entered Moon orbit. ${ }^{[81]}$				
Longjiang-2	21 May 2018	Long March 4C	CONSA	Orbiter	Operational

Future missions

There are several future lunar missions scheduled or proposed by various nations or organisations.

Funded and under development

Robotic

Country	Agency or company	Name	Launch due	Launch vehicle	Nature of mission

Launch vehicle	\quad Nature of mission
SLS	Crewed test of the Orion spacecraft on a free-return trajectory around the Moon.
Block	

Proposed but full funding still unclear
Robotic
The following robotic space probe missions have been proposed:

Country	Name	Proposed launch	Nature of mission
Private	Synergy Moon	2019	Rover
Private	Teamindus	2019 [112]	Rover
Private	Nova-C	$2021{ }^{[113][14]}$	Commercial lunar lander
China	Chang'e 7	2023	South pole lander ${ }^{[115]}$
NASA	Lunar rover (unnamed)	2023	Polar rover to scout for water, mass: $300 \mathrm{~kg}-500 \mathrm{~kg}$ [116]
Russia	Luna 28. Luna 29. Luna 30 . Luna 31	2024-2026 ${ }^{[103]}$	Technology development for prospecting water and other natural resources needed for a future lunar base; part of Luna-Glob program.
China	Chang'e 8	2026	South pole lander [115]
North Korea	Moon Mission ${ }^{[117]}$	$2028{ }^{[118]}$	
$\overline{\underline{\underline{U S}}}$	MoonRise	May compete in New Frontiers program NF5 selection in the late 2020s [179]	Sample return from South Pole-Aitken basin ${ }^{[120]}$
$\overline{\underline{\underline{D S A}}}$	BOLAS	TBD	Two tethered CubeSats on a very low lunar orbit [${ }^{[121]}$

Crewed

Unmanned Lunar Landings

.After the unsuccessful attempt by the Luna 1 to land on the Moon in 1959, the Soviet Union performed the first hard (unpowered) Moon landing later that same year with the Luna 2 spacecraft, a feat the U.S. duplicated in 1962 with Ranger 4. Since then, twelve Soviet and U.S. spacecraft have used braking rockets to make soft landings and perform scientific operations on the lunar surface, between 1966 and 1976. In 1966 the USSR accomplished the first soft landings and took the first pictures from the lunar surface during the Luna

Manned Lunar Landings

.A total of twelve men have landed on the Moon. This was accomplished with two US pilot-astronauts flying a Lunar Module on each of six NASA missions across a 41-month period starting on 20 July 1969 UTC, with Neil Armstrong and Buzz Aldrin on Apollo 11, and ending on 14 December 1972 UTC with Gene Cernan and Jack Schmitt on Apollo 17. Cernan was the last to step off the lunar surface.

Future of
 Humanity and the Moon:

X

SAMPLE RETURN
Pristine Moon or Mars samples robotically
delivered to the Gateway for safe
processing and return to Earth.

COMMUNICATIONS RELAY
Data transfer for surface and orbital robotic missions and high-rate communications to and from Earth.

HUMAN ACCESS TO \& FROM LUNAR SURFACE Astronaut support and teleoperations of surface assets. CARGO RESUPPLY Expanding the space economy with supplies delivered aboard partner ships that also provide interim spacecraft volume for additional utilization.

INTERNATIONAL CREW

International crew expeditions for up to 30 days as early as 2024. Longer expeditions as new elements are delivered to the Gateway.

- SCIENCE AND TECH DEMOS

Support payloads inside, affixed outside, free-

SIX DAYS

TO ORBIT THE MOON
The orbit keeps the crew in constant communication with Earth and out of the Moon's shadow.

A HUB FOR FARTHER DESTINATIONS
From this orbit, vehicles can embark
to multiple
destinations: The
Moon, Mars and
flying nearby, or on the lunar surface.
Experiments and investigations continue operating autonomously when crew is not present.

GATEWAY SPECS

COC. 4 Crew
4 Grew
Members

30-90 Day Crew Missions

Up to 75 mt with Volume $384,000 \mathrm{~km}$ from Accessible via NASA's SLS as well as international and commercial ships.

Lunar Orbital Platform-Gateway

.The Lunar Orbital Platform-Gateway (LOP-G) is an American-led international project led by NASA proposed to create a lunar-orbit space station. It is intended to serve as a solar-powered communications hub, science laboratory, short-term habitation module, and holding area for rovers and other robots.[1]
.The science disciplines to be studied on the Gateway are expected to include planetary science,

Colonizing and Industrializing the Moon

(see Isaac Arthur video: https://www.youtube.com/watch?v=bGcvv3683Os)
.Easy to build habitats because of low surface gravity.

- Can cover craters or lava tubes with domes to create large city habitats.
.Plenty of metals like iron, aluminum, titanium for construction.
.Very easy to move resources to and from lunar surface because of low escape velocity

To the MCoari:
ottet thay pute bon mearinced

- Anch emer chawexucg tide a faspless eype
- That finde no alfect nordt ute constancy?

CREDITS

```
.https://slate.com/technology/2014/07/the-moon-s-two-faces-why-are-they-so-different.html
.https://blogs.nasa.gov/Watch_the_Skies/2009/06/18/post_1245351050269/
```


.https://en.wikipedia.org/wiki/Moon

```
.https://petapixel.com/2017/11/06/photographed-iss-crossing-full-moon/
.https://blogs.nasa.gov/Watch the Skies/2009/06/18/post 1245351050269/
.https://earthsky.org/astronomy-essentials/everything-you-need-to-know-hunters-moon
.https://www.youtube.com/watch?v=bGcvv3683Os
.https://en.wikipedia.org/wiki/List of missions to the Moon
.https://www.cbc.ca/news/technology/longest-eclipse-moon-1.4757893
.https://sputniknews.com/science/201812011070300348-russia-moon-base-lunar-exploration/
.https://mww.nasa.gov/multimedia/imagegallery/image feature 1454.html
.http://www.QuantumPhoenix.net/
.https://en.wikipedia.org/wiki/Creative_Commons
```


[^0]: Ms://len.wikpedia.org wikin ist of missions to the Moon

