

The Rest is Silence

Max Chatnoir
(Mary Anne Clark)
Professor of Biology
Texas Wesleyan University
Science Circle, 6 February 2021

What is a Mutation?

- A mutation is an change in a DNA sequence.
- Mutations occur randomly, either during DNA replication or as a consequence of modifying DNA bases by chemicals or radiation.
- Most mutations are single nucleotide replacements.
- Larger scale mutations may occur by errors in crossing over during meiosis.
- Mutations in a protein coding gene can change the protein.
- Mutations that occur in gamete producing cells may be inherited.

Consequences of Mutation

- Many genes are protein-coding, and determine the amino acid sequences of proteins.
- Example: Beta Globin
- Reference DNA coding sequence:

ATGGTGCATCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTGGGCAA
GGTGAACGTGGATGAAGTTGGTGGTGAGGCCCTGGCAGGCTGCTGGTGGTCT
ACCCTTGGACCCAGAGGTTCTTGAGTCCTTGGGATCTGTCCACTCCTGAT
GCTGTTATGGGCAACCCTAACGGTGAAGGCTCATGGCAAGAAAGTGCCTCGGTGC
CTTAGTGTGATGGCCTGGCTCACCTGGACAACCTAACGGCACCTTGCCACAC
TGAGTGAGCTGCACTGTGACAAGCTGCACGTGGATCCTGAGAAACTTCAGGCTC
CTGGGCAACGTGCTGGTCTGTGTGCTGGCCCATCACTTGGCAAAGAATTAC
CCCACCAAGTGCAGGCTGCCTATCAGAAAGTGGTGGCTGGTGTGGCTAATGCC
TGGCCCACAAGTATCACTAACGCTGCTTCTTGCTGTCCAATTCTATTAA

- Translation

MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPD
AVMGNPKVKAHGKKVLGAFSDGLAHLNLKGTATLSELHCDKLHVDOPENFRL
LGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH

Single Nucleotide Changes

Reference DNA sequence (partial) and translation:

ATGGTGCATCTGACTCCT**GAG**GAGAAGTCTGCCGTTACTGCC
M V H L T P **E** E K S A V (Normal)

ATGGTGCATCTGACTCCT**GTG**GAGAAGTCTGCCGTTACTGCC
M V H L T P **V** E K S A V (AA Sub)

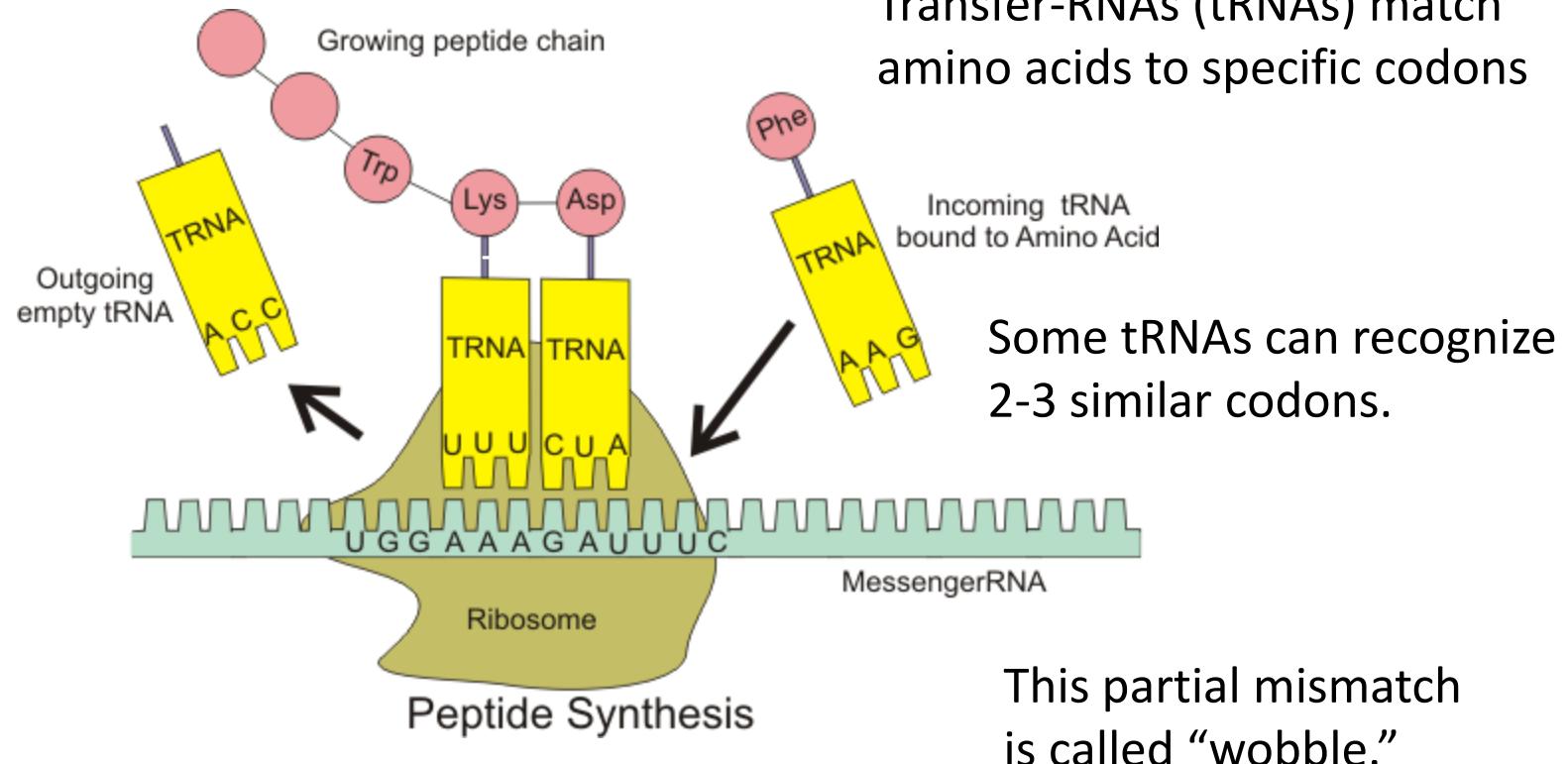
ATGGTGCATCTGACTCCT**TAG**GAGAAGTCTGCCGTTACTGCC
M V H L T P ***** E K S A V (Stop)

ATGGTGCATCTGACTCCT**GAA**GAGAAGTCTGCCGTTACTGCC
M V H L T P **E** E K S A V (silent)

Why Are Some Mutations Silent?

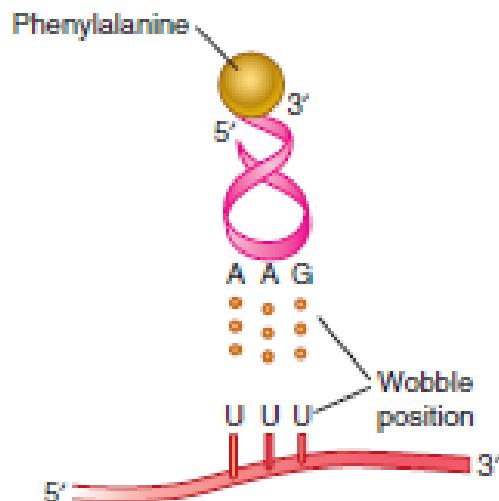
Each amino acid is specified by a 3-base codon.

64 possible codons, all used.


There are only 20 amino acids

Most amino acids have more than one codon.

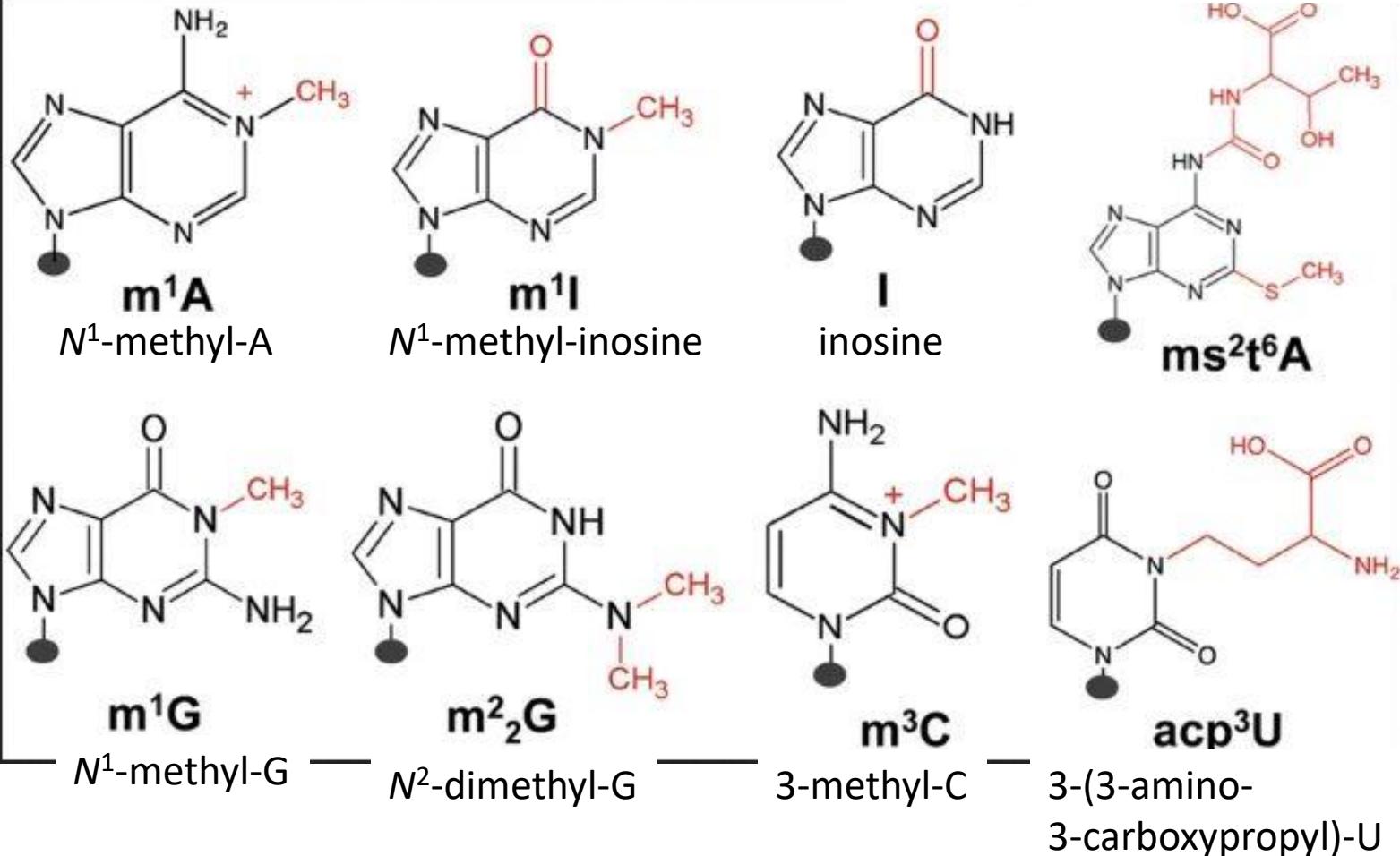
		Second Letter								
		U	C	A	G					
1st letter	U	UUU UUC UUA UUG	Phe Leu	UCU UCC UCA UCG	Ser	UAU UAC UAA UAG	Tyr Stop	UGU UGC UGA UGG	Cys Stop	U C A G
	C	CUU CUC CUA CUG	Leu	CCU CCC CCA CCG	Pro	CAU CAC CAA CAG	His Gln	CGU CGC CGA CGG	U C A G	
	A	AUU AUC AUA AUG	Ile	ACU ACC ACA ACG	Thr	AAU AAC AAA AAG	Asn Lys	AGU AGC AGA AGG	U C A G	
	G	GUU GUC GUA GUG	Val	GCU GCC GCA GCG	Ala	GAU GAC GAA GAG	Asp Glu	GGU GGC GGA GGG	U C A G	
3rd letter										


↑

The Code is Translated on Ribosomes

The Wobble Rules

The first base in the anticodon loop of a tRNA matches the 3rd of the 3 bases in an RNA codon. This is called the wobble position. In tRNAs, this position may be occupied by one of tRNA's many modified bases.


(a) Location of wobble position

Third base of mRNA codon:	Base in anticodon can be:
A	U, I, xm ⁵ s ² U, xm ⁵ Um, Um, xm ⁵ U, xo ⁵ U, k ² C
U	A, G, U, I, xo ⁵ U
G	C, A, U, xo ⁵ U
C	G, A, I

(b) Revised wobble rules

Modified tRNA bases

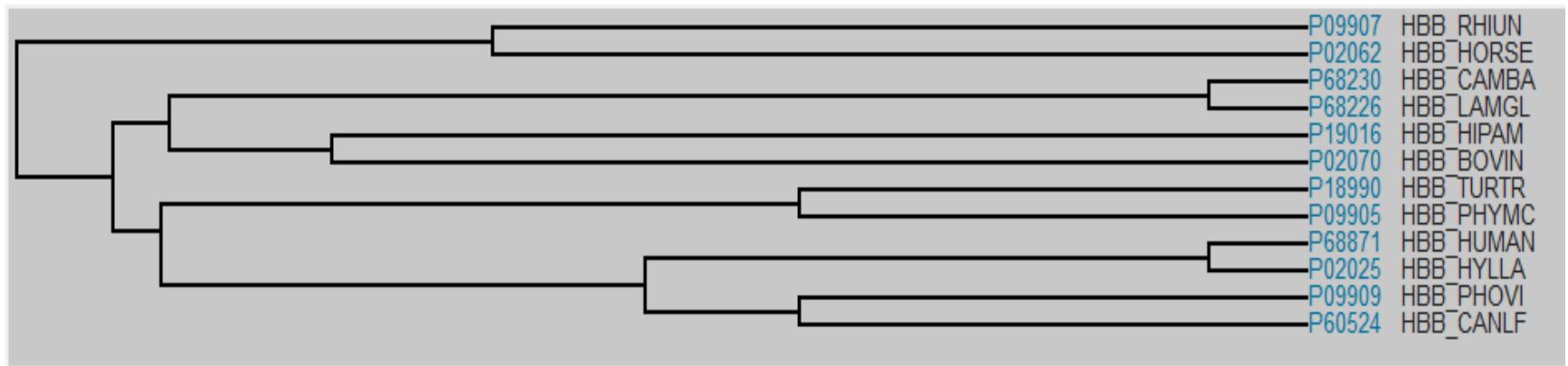
2-methylthio- *N*⁶-threonylcarbamoyl-A

Why am I even thinking about this?

- Last semester, I asked my students a question: If you look at the same protein-coding gene in two different species, which is likely to be more different: the coding sequence of the gene or the amino acid sequence of the encoded protein?
- In the genetic code, 3 bases specify one amino acid. So a coding sequence of 300 bases would specify a protein of 100 amino acids.
- Assume one base change = one amino acid change, so changing 30 bases would change 30 amino acids.
- $30 \text{ bases}/300 = 10\%$. $30 \text{ amino acids}/100 = 30\%$. So, as a percentage, the protein changes more than the DNA.

BUT....

- In the genetic code there is more than one codon per amino acid.
- Most amino acids have either 4 codons or 2 codons, for an average number of 3 codons/amino acid.
- Changes in the third base of the codon usually don't change the amino acid.
- So only 2/3 of the mutations will change the amino acid.
- So of our 30 mutations in the 300 base coding sequence are still 10% of the DNA. But now only 20 of those changes will change the amino acid. So the protein changes by 20%. It still changes more than the DNA.


Testing the Hypothesis

- So I have a hypothesis that changing the DNA by 10% will change the protein by 20%.
- I love to snoop in the databases, and this is a question that can be answered in the databases.
- I (or the students) could compare the DNA for a given gene for two different species.
- Compare the protein encoded by that DNA in the same two species.
- This is the story of what I learned by snooping.

Mutations Accumulate over Time

- Mutations are the primary source of evolutionary differences.
- If mutations occur more or less randomly, then the longer two species have been separated, the more mutations will have accumulated between them.
- Note the differences between proteins like the beta globins are more a record of evolutionary diversification than a cause.
- This is the basis for molecular phylogenies.
- Sample phylogeny based on the beta globins of 12 species: human, dog, horse, cow, camel, llama, whale, dolphin, seal, rhino, gibbon.

Beta Globin Phylogeny

We have six sister groups: horse-rhino, camel-llama, hippo-cow, dolphin-whale, human-gibbon and seal-dog. The two closest are camel-llama and human-gibbon. The furthest pair is hippo-cow.

OK, Back to Silence!

- These phylogenies are based on protein differences, i.e. on mutations that are NOT silent.
- How can we detect silent mutations?
- We start with three proteins:
 - Beta globin
 - Amelogenin
 - Rhodopsin
- ...and two species: humans and dogs (*Canis lupus familiaris*)

Beta Globin (Human)

MVHLTPEEKSAVTALWGKVNDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMG
NPKVKAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLGNVLVCVLA
HHFGKEFTPPVQAAYQKVVAGVANALAHKYH

Human vs Dog protein: 15 differences

Score	Expect	Method	Identities	Positives	Gaps
272 bits(695)	3e-95	Compositional matrix adjust.	131/146(90%)	137/146(93%)	0/146(0%)
Human 2	VHLTPEEKSAVTALWGKVNDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKV				61
Dog 1	VHLT E EKS V+ LWGKVNDEVGGEALGRLL+VYPWTQRFF+SFGDLSTPDAVM N KV				
	^ ^ ^ ^				
Query 62	KAHGKKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLGNVLVCVLAHHFGK				121
	KAHGKKVL +FSDGL +LDNLKGTF A LSELHCDKLHVDPENF+LLGNVLVCVLAHHFGK				
Sbjct 61	KAHGKKVLNSFSDGLKNLDNLKGTFAKLSELHCDKLHVDPENFKLLGNVLVCVLAHHFGK				120
Query 122	EFTPPVQAAYQKVVAGVANALAHKYH	147			
	EFTP VQAAYQKVVAGVANALAHKYH				
Sbjct 121	EFTPQVQAAYQKVVAGVANALAHKYH	146			

Beta Globin CDS:Human vs Dog

Human vs Dog CDS: 53 differences

15 are reflected by amino acid changes.
The rest (38 differences) are silent.

	Score 555 bits(615)	Expect 2e-155	Identities 387/440(88%)	Gaps 0/440(0%)	Strand Plus/Plus
Human	Query 1	ATGGTGCATCTGACTCCTGAGGAGAACGCTGCCGTTACTGCCCTGTGGGGCAAGGTGAAC	60		
Dog	Sbjct 69	ATGGTGCATCTGACTGCTGAAGAGAACGAGCTTGTCTCCGGCCTGTGGGGCAAGGTGAAT	128		
	Query 61	GTGGATGAAGTTGGTGGTGAGGCCCTGGGCAGGCTGCTGGTGGCTACCCCTGGACCCAG	120		
	Sbjct 129	GTGGACGAAGTTGGCGGTGAGGCCCTGGGCAGGCTGCTGATTGCTACCCCTGGACTCAG	188		
	Query 121	AGGTTCTTGAGTCCTTGGGATCTGTCCACTCCTGATGCTGTATGGGCAACCCCTAAG	180		
	Sbjct 189	AGGTTCTTGACTCCTTGGGACCTGTCCACTCCTGATGCTGTATGAGCAATGCTAAA	248		
	Query 181	GTGAAGGCTCATGGCAAGAAAGTGCTCGGTGCCTTAGTGATGGCCTGGCTCACCTGGAC	240		
	Sbjct 249	GTGAAGGCCCATGGCAAGAACGGTGTGAACCTTGTGATGGCCTGAAAAACCTGGAC	308		
	Query 241	AACCTCAAGGGCACCTTGCCACACTGAGTGAGCTGCACGTGACAAGCTGCACGTGGAT	300		
	Sbjct 309	AACCTCAAGGGCACCTTGCTAACGTCAGTGAGCTTCACTGTGACAAGCTGCACGTGGAT	368		
	Query 301	CCTGAGAACCTCAGGCTCCTGGCAACGTGCTGGTCTGTGCTGGCCATCACTTGGC	360		
	Sbjct 369	CCCGAGAACCTCAAGCTCCTGGCAACGTGCTGTGCTGGCTCACCACTTGGC	428		
	Query 361	AAAGAATTCACCCACCAAGTGCAGGCTGCCTATCAGAAAAGTGGTGGCTGGTGTGGCTAAT	420		
	Sbjct 429	AAAGAATTCACCCCTCAGGTGCAGGCTGCCTATCAGAACGGTGGTGGCTGGTGTGGCCAAT	488		
	Query 421	GCCCTGGCCACAAGTATCA	440	CTAA	
	Sbjct 489	GCCCTGGCTACAAGTACCA	508	CTAA	

Amelogenin (Human)

MGTWILFACLLGAAFAMPLPPHPGHPGYINF SYEVLTPLKWYQSIRPPYPSYGYEP
MGGWLHHQIIPVLSQQHPPPTHTLQPHHHIPVVPAQQPVIPQQPMMMPVPGQHS
MTPIQHHQPNLPPPAQQPYQPQPVQPQPHQPMQPQPPVHPMQPLPPQPLP
PMFPMQPLPPMLPDLTLEAWPSTDKT KREEVD

Human vs Dog protein: 17 differences (1 in a gap, 16 in the CDS)

Score	Expect	Method	Identities	Positives	Gaps
216 bits(550)	8e-72	Compositional matrix adjust.	175/192(91%)	184/192(95%)	1/192(0%)
Human	Query 1	MGTWILFACLLGAAFAMPLPPHPGHPGYINF SYEVLTPLKWYQS-IRPPYPSYGYEP	59		
Dog	Sbjct 1	MGTWILFACLLGAAFAMPLPPHPGHPGYINF SYEVLTPLKWYQ+ IR PYPSYGYEP	59		
Human	Query 60	MGTWILFACLLGAAFAMPLPPHPGHPGYINF SYEVLTPLKWYQNMIRHPYPSYGYEP	60		
Dog	Sbjct 61	MGTWILFACLLGAAFAMPLPPHPGHPGYINF SYEVLTPLKWYQNMIRHPYPSYGYEP	60		
Human	Query 120	WLHHQIIPVLSQQHPPPTHTLQPHHHIPVVPAQQPVIPQQPMMMPVPGQHSMTPIQHHQPNL	119		
Dog	Sbjct 121	WLHHQIIPVLSQQHPPPTHTLQPHHHIPVVPAQQPVIPQQPMMMPVPGQHSMTPIQHHQPNL	119		
Human	Query 180	PLPAQQPFQPQPVQPQPHQPIQPQPPVHPIQPLPPQPLPMLPDLTLEAW	179		
Dog	Sbjct 181	PLPAQQPFQPQPVQPQPHQPIQPQPPVHPIQPLPPQPLPMLPDLTLEAW	179		
		P+TDKT KREEVD	191		
		P+TDKT KREEVD	192		

Amelogenin CDS Human vs Dog

		Score 867 bits(961)	Expect 0.0	Identities 540/579(93%)	Gaps 3/579(0%)	Strand Plus/Plus
Human	Query 1	ATGGGGACCTGGATTATTCGCTGCCTCCTGGGAGCAGCTTGTCCATGCCTCTACCA				60
Dog	Sbjct 74	ATGGGGACCTGGATTATTCGCTGCCTCCTGGGAGCAGCCTTGCTATGCCCTACCA				133
	Query 61	CCTCATCCTGGGCACCCCTGGTTATATCAACTTCAGCTATGAGGTGCTTACCCCTTGAG				120
	Sbjct 134	CCTCATCCTGGGCACCCCTGGTTATATCAACTTCAGCTATGAGGTGCTTACCCCTCTGAAG				193
	Query 121	TGGTACCAAGAGCAT---AAGGCCACCGTACCCCTCTATGGTACGAGCCCATGGTGGGA				177
	Sbjct 194	TGGTACCAAGAAATGATAAAGGCATCCGTACCCCTCTATGGTACGAACCCATGGTGGGA	Gap	AA	A	253
	Query 178	TGGCTGCACCAACAAATCATCCCCGTGCTGTCCAAACAGCACCCCCGACTCACACCTG				237
	Sbjct 254	TGGCTGCACCAACAAATCATCCCCGTGCTGTCCAGCAAAATCCCTCGAACATCACGCCCTG				313
	Query 238	CAGCCTCATCACCAACATCCCACTGGTGCAGCTCAGCAGCCCGTATCCCCCAGCAACCA				297
	Sbjct 314	CAGCCTCATCACCAACATCCCACTGGTGCAGCTCAGCAGCCCGTGGTCCCCAGCAACCA				373
	Query 298	ATGATGCCCGTTCTGGCAACACTCCATGACTCCAATCCAACACCACAGCCAAACCTC				357
	Sbjct 374	ATGATGCCAGTTCTGGCAACACTCCATGACTCCAACCCCAACACCACAGCCAAACCTC				433
	Query 358	CCTCCggccggccagcagccctaccagccccagccgttccagccacagccctaccagccc				417
	Sbjct 434	CCTCTGCCTGCCAGCAGCCCTCCAGCCCCAGCCACAGCCTCACCAAGCCC				493
	Query 418	atgcagccccagccacctGTGCACCCCATGCAGCCCTGCCGCCACAGCCACCTCTGCCT				477
	Sbjct 494	ATCCAGCCCCAGCCACCCGTGCACCCCATCCAGCCCCGCCACAGCCACCTCTGCCT				553
	Query 478	CCGATGTTCCCCATGCAGCCCTGCCTCCATGCTCCTGATCTGACTCTGGAAGCTTGG				537
	Sbjct 554	CCGATGTTCCCCATACAGCCCTGCCAGCCCCATGCTCCTGACCTGCCCTGGAAGCTTGG				613
	Query 538	CCATCAACAGACAAGACCAAGCGGGAGGAAGTGGATTAA		576		
	Sbjct 614	CCAGCAACAGACAAGACCAAGCGGGAGGAAGTGGATTAA		652		

Human vs Dog CDS:
39 differences
(3 in a gap, 36 in the CDS)

20 codon differences
are silent.

Rhodopsin (Human)

MNGTEGPNFYVPFSNATGVVRSPFEYPQYYLAEPWQFSMLAAYMFLLIVLGFPINFLTLVTVQHKKLRPL
 NYILLNLAVADLFMVLGGFTSTLYTSLHGYFVFGPTGCNLEGFFATLGGEIALWSVVLAIERYVVVCKPMSNF
 RFGENHAIMGVAFTWVMALACAAPPLAGWSRYIPEGLQCSCGIDYYTLKPEVNNESFVIYMFVVHFTIPMII
 IFFCYGQLVFTVKEAAAQQQESATTQKAKEVTRMVIIMVIAFLICWVPYASVAFYIFTHQGSNFGPIFMTIPA
 FFAKSAAI YNPVIYIMMNKQFRNCMLTTICCGKNPLGDDEASATVSKTETSQVAPA

Human vs dog protein: 26 differences (10 in gap, 16 in CDS)

	Score	Expect	Method	Identities	Positives	Gaps
	667 bits(1722)	0.0	Compositional matrix adjust.	332/358(93%)	344/358(96%)	10/358(2%)
Human	Query 1	MNGTEGPNFYVPFSNATGVVRSPFEYPQYYLAEPWQFSMLAAYMFLLIVLGFPINFLTLV			60	
Dog	Sbjct 1	MNGTEGPNFYVPFSNKTGVVRSPFEYPQYYLAEPWQFSMLAAYMFLLIVLGFPINFLTLV			60	
	Query 61	VTVQHKKLRPLNYILLNLAVADLFMVLGGFTSTLYTSLHGYFVFGPTGCNLEGFFATLG			120	
		VTVQHKKLRPLNYILLNLAVADLFMVGGFT+TLYTSLHGYFVFGPTGCN+EGFFATLG				
	Sbjct 61	VTVQHKKLRPLNYILLNLAVADLFMVGFFTTLYTSLHGYFVFGPTGCNVEGFFATLG	^ ^ ^		120	
	Query 121	GEIALWSLVLAIERYVVVCKPMSNFRGENHAIMGVAFTWVMALACAAPPLAGWS----			176	
		GEIALWSLVLAIERYVVVCKPMSNFRGENHAIMGVAFTWVMALACAAPPLAGWS				
	Sbjct 121	GEIALWSLVLAIERYVVVCKPMSNFRGENHAIMGVAFTWVMALACAAPPLAGWSSLLS			180	
	Query 177	-----RYIPEGLQCSCGIDYYTLKPEVNNESFVIYMFVVHFTIPMIIIFFCYGQLVFTV			230	
	Gap	RYIPEG+QCSCGIDYYTLKPE+NNESFVIYMFVVHF				
	Sbjct 181	IPMI+IFFCYGQLVFTVHSPLVLRYIPEGMQCSCGIDYYTLKPEINNESFVIYMFVVHFAIPMIVIFFCYGQLVFTV			240	
	Query 231	KEAAAQQQESATTQKAKEVTRMVIIMVIAFLICWVPYASVAFYIFTHQGSNFGPIFMTI			290	
		KEAAAQQQESATTQKAKEVTRMVIIMVIAFLICWVPYASVAFYIFTHQGS+FGPIFMT+				
	Sbjct 241	KEAAAQQQESATTQKAKEVTRMVIIMVIAFLICWVPYASVAFYIFTHQGSDFGPIFMTL			300	
	Query 291	PAFFAKSAAIYNPVIYIMMNKQFRNCMLTTICCGKNPLGDDEASATVSKTETSQVAPA			348	
		PAFFAKS++IYNPVIYIMMNKQFRNCM+TT+CCGKNPLGDDEASA+SKTETSQVAPA				
	Sbjct 301	PAFFAKSSSIYNPVIYIMMNKQFRNCM+TTLCCGKNPLGDDEASASASKTETSQVAPA			358	

Rhodopsin CDS Human vs Dog-1

	Score 1488 bits(1649)	Expect 0.0	Identities 971/1077(90%)	Gaps 30/1077(2%)	Strand Plus/Plus	
Human	Query 1	ATGAATGGCACAGAAGGCCCTAACCTACGTGCCCTCTCCAATGCGACGGGTGTGGTA			60	106 differences
Dog	Sbjct 1	ATGAACGGGACGGAGGGCCCGAACCTACGTGCCCTCTCCAACAAGACGGGTGTGGTG			60	(30 in gap, 76 in CDS)
	Query 61	CGCAGCCCCTCGAGTACCCACAGTACTACCTGGCTGAGCCATGGCAGTTCTCCATGCTG			120	
	Sbjct 61	CGCAGCCCCTCGAGTACCCACAGTACTACCTGGCTGAGCCATGGCAGTTCTCCATGCTG			120	
	Query 121	GCCGCCTACATGTTCTGCTGATCGTGTGGCTTCCCCATCAACTTCCCTACGCTCTAC			180	
	Sbjct 121	GCTGCCTACATGTTCTGCTGATCGTGTGGCTTCCCCATCAACTTCCCTACGCTCTAC			180	
	Query 181	GTCACCGTCCAGCACAAGAAGCTGCGCACGCCCTCAACTACATCCTGCTAACCTAGCC			240	
	Sbjct 181	GTCACAGTCCAGCACAAGAAGCTGCGTACACCTCTCAACTACATCCTGCTAACCTGGCT			240	60 codon differences are silent
	Query 241	GTGGCTGACCTCTTCATGGCCTTAGGTGGCTTCACCAGCACCCCTACACCTCTGCAT			300	
	Sbjct 241	GTGGCTGACCTCTTCATGGCTTCTGGTGGCTTCACCACCCCTACACCTCTGCAT			300	
	Query 301	GGATACTTCGTCTCGGGCCCACAGGATGCAATTGGAGGGCTTTGCCACCCCTGGC			360	
	Sbjct 301	GGATACTTGTCTCGGGCCCACAGGATGCAATTGGAGGGCTTTGCCACACTGGC			360	
	Query 361	GGTGAAATTGCCCTGTGGCTTGGTGGCTGCCATCGAGCGGTACGTGGTGGTGT			420	
	Sbjct 361	GGTGAAATTGCCCTGTGGCTTGGTGGCTGCCATTGAGCGGTACGTGGTGGTGT			420	
	Query 421	AAGCCCATGAGCAACTTCCGCTTCGGGAGAACCATGCCATCATGGCGTTGCCCTCACC			480	
	Sbjct 421	AAGCCCATGAGCAACTTCCGTTGGGAGAACCATGCCATCATGGCGTGCCTTCACC			480	
	Query 481	TGGGTCACTGGCGCTGGCCTGCGCCGACCCCCACTCGCCGGCTGGTC-----		-----	527	
	Sbjct 481	TGGGTCACTGGCACTGGCCTGTGCAGCACCCCCCTCGCTGGCTGGTCCAGTCTCCTGTCT		-----	540	
	Query 528	-----CAGGTACATCCCCGAGGGCCTGCAGTGCTCGTGTGGAATCGAC	-----		570	
	Sbjct 541	CACTCCCCCTCTGGTGTCAAGGTACATCCCAGAGGGCATGCAGTGCTCATGTGGGATCGAC			600	

Gap

Rhodopsin CDS Human vs Dog-2

	Human	Query	571	TA CTACACGCTCAAGCCGGAGGTCAACAA ACGAGTC TTTGT CATCTACATGTT CGTGGTC	630
	Dog	Sbjct	601	TA CTACACACTCAAGCCAGAA ATCAACAA ATGAGTC CTTGT CATCTACATGTT CGTGGTC	660
		Query	631	CA CTTCACC ATCCCCATGATT ATCATCT TTTGT CTGCTATGG CAGCTCGT CTTCACCG TC	690
		Sbjct	661	CA CTTCGCC ATCCCCATGATT GT CATATTCT CTGCTATGG ACAGCTCGT CTTCACAG TC	720
		Query	691	AA AGGAGGCC GCTGCC CAGCAG CAGGAG TCAG GCCACC CACACAG AAGG CAGAGAAG GGAG TC	750
		Sbjct	721	AA AGGAGGC AGCTGCC CAGCAG CAGGA ATGG GCCACC ACCC AGAAGG CTGAAA AGGAGG TC	780
		Query	751	AC CCCGC ATGGT CATCAT CATGGT CATCG CTTCT GATCT GCTGG GTGCC CTACGCC AGC	810
		Sbjct	781	AC CCCGC ATGGT CATCAT CATGGT CATCG CTTCT GATCT GCTGG GTGCC CTATGCC AGT	840
		Query	811	GT GGCATT CTACAT CTTCAC CCACCAG GGCT CCA ACTTC GGTCCC ATCTT CATGAC CATC	870
		Sbjct	841	GT GGCATT CTACAT CTTCAC CCACCAG GGCT CCGACT TTGG CCCCAT CTTC CATGAC CTC	900
		Query	871	CC AGCGTT CTTG CCAAG AGAGCG GCC CATCTAC AAC CC CTGT CATCT ATAT CATGAT GAAC	930
		Sbjct	901	CC AGCGTT CTTC GCCAAG TCC CTCC CATCTAC AAC CC CTGT CATCT ATAT CATGAT GAAC	960
		Query	931	AA AGCAGTT CCGG AACT GCAT GCT ACCA CC CATCT GCT GCC AAGA ACCC ACTGG GTGAC	990
		Sbjct	961	AA AGCAGTT CCGG AACT GCAT GAT CACC ACC CTGT GGCA AAGA ACCC ACTGG GTGAC	1020
		Query	991	GA TGAGGG CCTCT GCTAC CGTGT CCAAG ACGG AGAC GCCAG GTGG CCCC GGC CTAA	1047
		Sbjct	1021	GA CGAGGG CCTCT GCCAG CGC CTCCAAG ACGG AGAC GCCAG GTGG ACC GGC CTAA	1077

Partial translation of Rhodopsin

Human	571	TAC	TAC	ACG	CTC	AAG	CCG	GAG	GTC	AAC	AAC	GAG	TCT	TTT	GTC	ATC	TAC	ATG	TTC	GTG	GTC
		Y	Y	T	L	K	P	E	V	N	N	E	S	F	V	I	Y	M	F	V	V
Dog	601	TAC	TAC	ACA	CTC	AAG	CCA	GAA	ATC	AAC	AAT	GAG	TCC	TTC	GTC	ATC	TAC	ATG	TTC	GTG	GTC
														M							
	631	CAC	TTC	ACC	ATC	CCC	ATG	ATT	ATC	ATC	TTT	TTC	TGC	TAT	GGG	CAG	CTC	GTC	TTC	ACC	GTC
		H	F	T	I	P	M	I	I	I	F	F	C	Y	G	Q	L	V	F	T	V
	661	CAC	TTC	GCC	ATC	CCC	ATG	ATT	GTC	ATA	TTC	TTC	TGC	TAT	GGA	CAG	CTC	GTC	TTC	ACA	GTC
		R							V												
	691	AAG	GAG	GCC	GCT	GCC	CAG	CAG	CAG	GAG	TCA	GCC	ACC	ACA	CAG	AAG	GCA	GAG	AAG	GAG	GTC
		K	E	A	A	A	Q	Q	Q	E	S	A	T	T	Q	K	A	E	K	E	V
	721	AAG	GAG	GCA	GCT	GCC	CAG	CAG	CAG	GAA	TCG	GCC	ACC	ACC	CAG	AAG	GCT	GAA	AAG	GAG	GTC
	751	ACC	CGC	ATG	GTC	ATC	ATC	ATG	GTC	ATC	GCT	TTC	CTG	ATC	TGC	TGG	GTG	CCC	TAC	GCC	AGC
		T	R	M	V	I	I	M	V	I	A	F	L	I	C	W	V	P	Y	A	S
	781	ACC	CGC	ATG	GTC	ATC	ATC	ATG	GTC	ATC	GCT	TTC	CTG	ATC	TGC	TGG	GTG	CCC	TAT	GCC	AGT
	811	GTG	GCA	TTC	TAC	ATC	TTC	ACC	CAC	CAG	GGC	TCC	AAC	TTC	GGT	CCC	ATC	TTC	ATG	ACC	ATC
		V	A	F	Y	I	F	T	H	Q	G	S	N	F	G	P	I	F	M	T	I
	841	GTG	GCA	TTC	TAC	ATC	TTC	ACC	CAC	CAG	GGC	TCC	GAC	TTT	GGC	CCC	ATC	TTC	ATG	ACC	CTC
													D							L	

In these five lines of sequence, there are 25 mutations (bold) with 5 mutations resulting in substitutions (in red) and 20 that are silent.

Summary of Differences

Protein	Protein Size (Human aa)	CDS Differences	Protein Differences
Beta globin	146	53	15
Amelogenin	191	36	16
Rhodopsin	348	76	16

These are all relatively small proteins. How about a bigger one?

Summary of Differences

Protein	Protein Size (Human aa)	CDS Differences	Protein Differences
Beta globin	146	53	15 (28%)
Amelogenin	191	36	16 (44%)
Rhodopsin	348	76	16 (21%)
CFTR	1480	468	147 (31%)

Why do silent mutations prevail?

- Silent mutations are more common than chance predicts because of the structure of the code and the chemistry of mutation.
- Silent mutations are more common because if you get side-by-side mutations in the same codon, it will only be expressed once. Not all unexpressed mutations are silent.
- Silent mutations are more common because there is natural selection in favor of silence. If you don't mess with the protein you are more likely to survive.

Why do silent mutations prevail?

- Silent mutations are more common than chance predicts because of the structure of the code and the chemistry of mutation.
- There are two types of base substitutions:
 - Transitions (purine-purine or pyrimidine-pyrimidine)
 - Transversions (purine \leftrightarrow pyrimidine).

CAU	His
CAC	
CAA	Gln
CAG	

Because of the chemistry of mutation, transitions are more common than transversions.

- Transitions in the third position are likely to be silent because of the structure of the code.

Transitions and Transversions in the Rhodopsin Sequence

H 571 TAC TAC ACG CTC AAG CCG GAG GTC AAC AAC GAG TCT TTT GTC ATC TAC ATG TTC GTG GTC
Y Y T L K P E V N N E S F V I Y M F V V

D 601 TAC TAC ACA CTC AAG CCA GAA ATC AAC AAT GAG TCC TTC GTC ATC TAC ATG TTC GTG GTC
M

TV TV

631 CAC TTC ACC ATC CCC ATG ATT ATC ATC TTT TTC TGC TAT GGG CAG CTC GTC TTC ACC GTC
H F T I P M I I F F C Y G Q L V F T V

661 CAC TTC GCC ATC CCC ATG ATT GTC ATA TTC TGC TAT GGA CAG CTC GTC TTC ACA GTC
R V

TV TV TV

691 AAG GAG GCC GCT GCC CAG CAG CAG GAG TCA GCC ACC ACA CAG AAG GCA GAG AAG GAG GTC
K E A A A Q Q E S A T T Q K A E K E V

721 AAG GAG GCA GCT GCC CAG CAG CAG GAA TCG GCC ACC ACC CAG AAG GCT GAA AAG GAG GTC

751 ACC CGC ATG GTC ATC ATC ATG GTC ATC GCT TTC CTG ATC TGC TGG GTG CCC TAC GCC AGC
T R M V I I M V I A F L I C W V P Y A S

781 ACC CGC ATG GTC ATC ATC ATG GTC ATC GCT TTC CTG ATC TGC TGG GTG CCC TAT GCC AGT

*TV

811 GTG GCA TTC TAC ATC TTC ACC CAC CAG GGC TCC AAC TTC GGT CCC ATC TTC ATG ACC ATC
V A F Y I F T H Q G S N F G P I F M T I

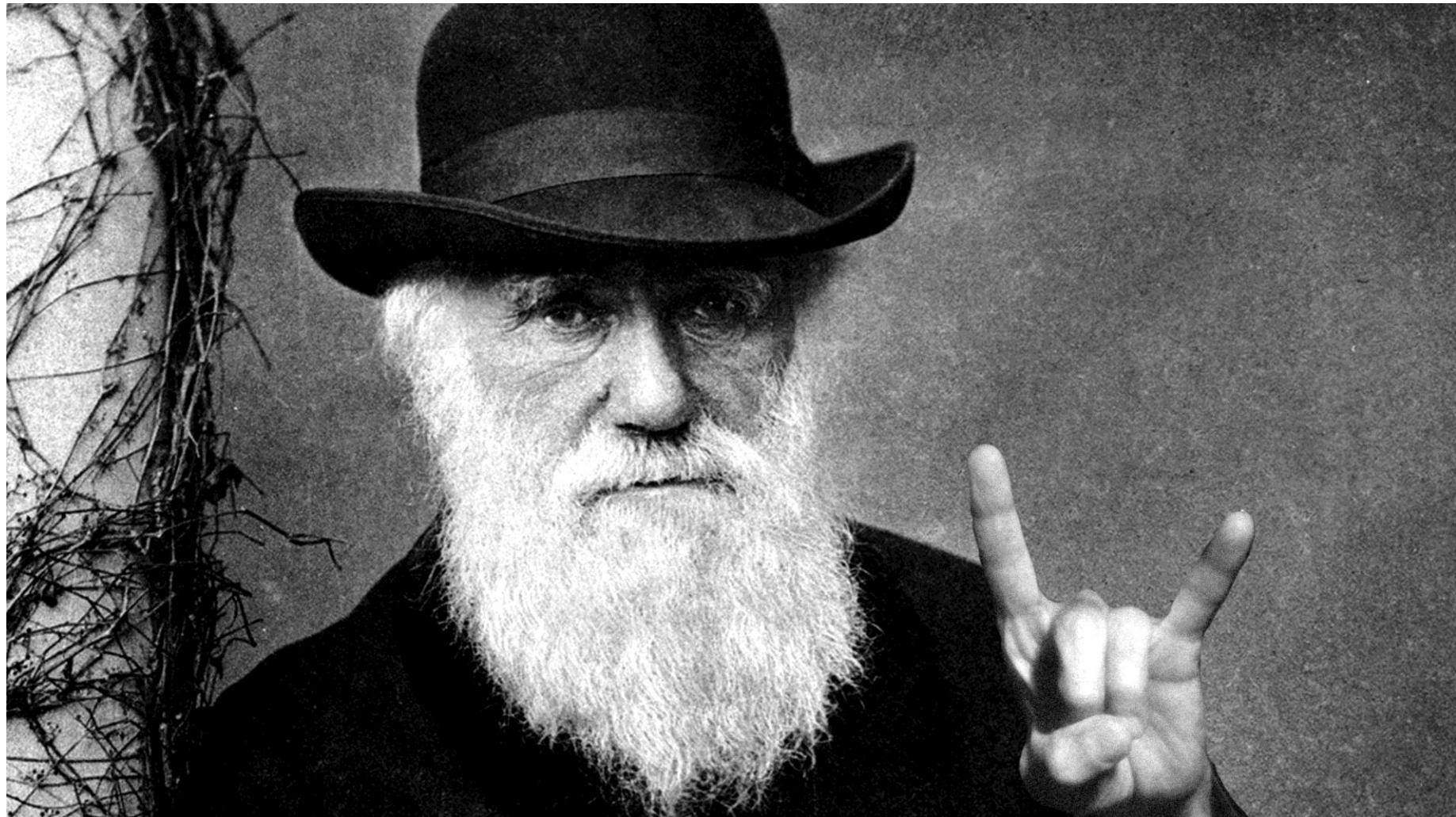
841 GTG GCA TTC TAC ATC TTC ACC CAC CAG GGC TCC GAC TTT GGC CCC ATC TTC ATG ACC CTC
D L

Of the 25 mutations, 6 are transversions (TV), but only one (*) was associated with a substitution. The other 4 changes were all due to B1 transitions. So there is no bias toward transversions producing amino acid substitutions.

Why do silent mutations prevail?

- Clustered mutations will be underexpressed if they fall into the same codon.
- In the set of proteins we've looked at, the beta globin coding sequence has the most clustering.
- How does the clustering contribute to amino acid changes in the protein?
- How does the clustering contribute to unexpressed base changes?

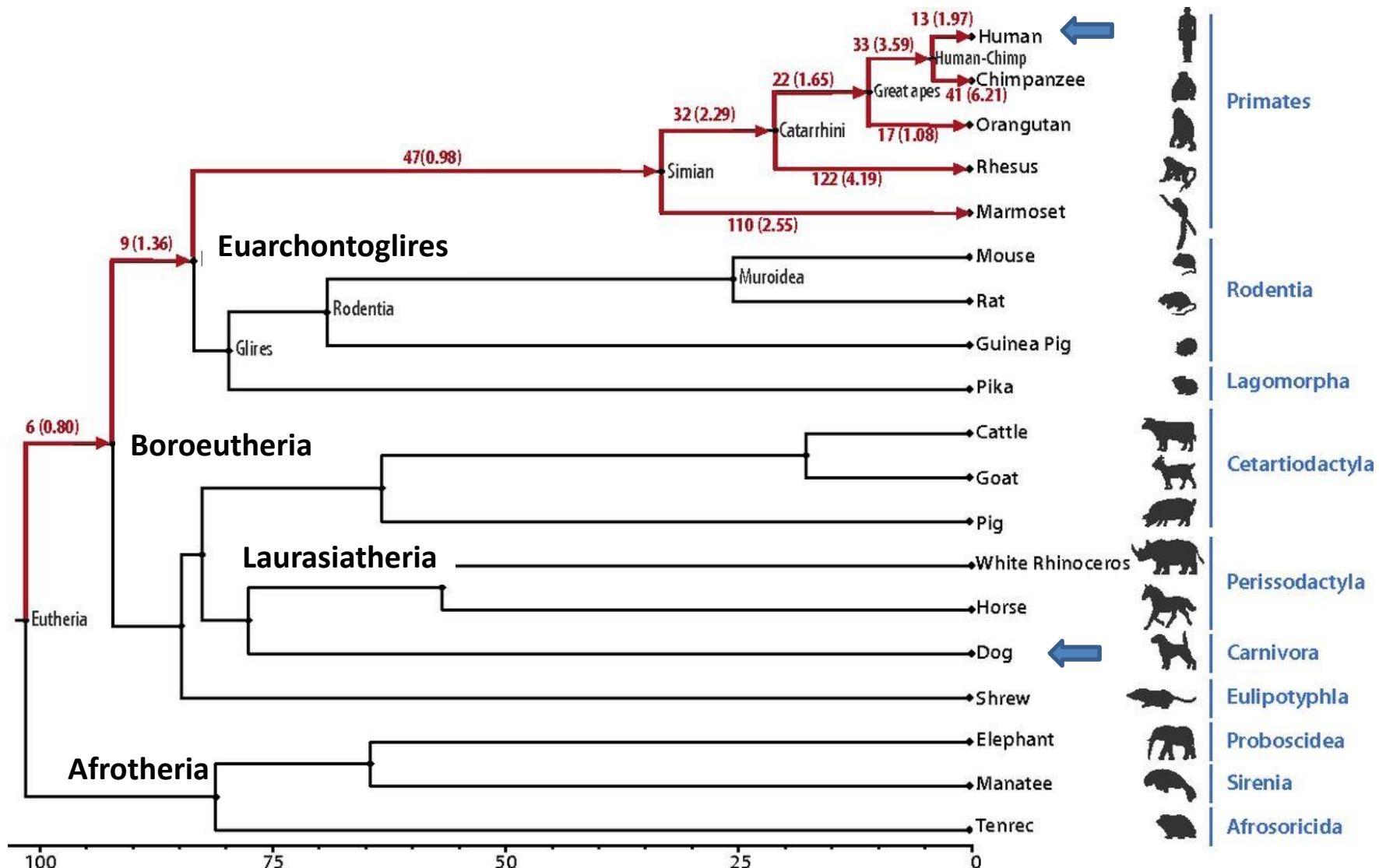
Mutational Clusters in Human HBB CDS


ATG GTG CAT CTG ACT CCT GAG GAG AAG TCT GCC GTT ACT
GCC CTG TGG GGC AAG GTG AAC GTG GAT GAA GTT GGT GGT
GAG GCC CTG GGC AGG CTG CTG GTG GTC TAC CCT TGG ACC
CAG AGG TTC TTT GAG TCC TTT GGG GAT CTG TCC ACT CCT
GAT GCT GTT ATG GGC AAC CCT AAG GTG AAG GCT CAT GGC
AAG AAA GTG CTC GGT GCC TTT AGT GAT GGC CTG GCT CAC
CTG GAC AAC CTC AAG GGC ACC TTT GCC ACA CTG AGT GAG
CTG CAC TGT GAC AAG CTG CAC GTG GAT CCT GAG AAC TTC
AGG CTC CTG GGC AAC GTG CTG GTC TGT GTG CTG GCC CAT
CAC TTT GGC AAA GAA TTC ACC CCA CCA GTG CAG GCT GCC
TAT CAG AAA GTG GTG GCT GGT GTG GCT AAT GCC CTG GCC
CAC AAG TAT CAC TAA

- 53 nucleotide substitutions, with 42 codons changed. 8 codons contain 2-3 substitutions.
- 15 amino acid changes, and 27 silent codon changes. A cluster can hide a nucleotide change, but ALL of the multichange codons will change the amino acid. Of the 34 single nucleotide codon changes, 27 (79%) are silent.

Why do silent mutations prevail?

- Assuming random mutation, about 1/3 of mutations should be silent, mostly those that change only the 3rd nucleotide of a codon.
- In the beta globin gene, there are 10 first position mutations, 8 second position mutations, and 34 third position mutations.
- All of the 8 codons with more than one mutation change their amino acid.
- Of the 34 codons with a single nucleotide change, only 7 change their amino acid, and the remaining 27 are silent.
- Silent mutations appear to be strongly selected, or most mutations that DO change the amino acid will kill the bearer.


Darwin Wins Again

So it's Probably Selection

- We've looked only at 4 proteins in two species: humans and dogs.
- Humans and dogs are in two different branches of the mammalian phylogenetic tree: humans in the Euarchontoglires and dogs in the Laurasiatheria.

Mammalian phylogeny

So it's Probably Selection

- We've looked only at 4 proteins in two species: humans and dogs.
- Humans and dogs are in two different branches of the mammalian phylogenetic tree: humans in the Euarchontoglires and dogs in the Laurasiatheria.
- These two lineages separated over 90 MYA, so we're looking at the mutational accumulation over that time span.
- The silent mutations are much favored over the substitution mutations.
- Some proteins are less tolerant of change than others.

Question

Are silent mutations totally silent?

- They don't affect the amino acid encoded by the protein.
- But do they affect the production of the protein?
- Translation involves interaction between the tRNA anticodon and the mRNA codon on the ribosome.
- Transfer RNAs have to match two different binding sites: the tRNA binding sites on the ribosome and the tRNA binding sites on the aminoacyl tRNA synthetases that put the amino acid on the tRNA.

Some Codons are Preferred over Others

Example: Human codon bias

UUU	F	0.46	UCU	S	0.19	UAU	Y	0.44	UGU	C	0.46
UUC	F	0.54	UCC	S	0.22	UAC	Y	0.56	UGC	C	0.54
UUA	L	0.08	UCA	S	0.15	UAA	*	0.30	UGA	*	0.47
UUG	L	0.13	UCG	S	0.05	UAG	*	0.24	UGG	W	1.00
CUU	L	0.13	CCU	P	0.29	CAU	H	0.42	CGU	R	0.08
CUC	L	0.20	CCC	P	0.32	CAC	H	0.58	CGC	R	0.18
CUA	L	0.07	CCA	P	0.28	CAA	Q	0.27	CGA	R	0.11
CUG	L	0.40	CCG	P	0.11	CAG	Q	0.73	CGG	R	0.20
AUU	I	0.36	ACU	T	0.25	AAU	N	0.47	AGU	S	0.15
AUC	I	0.47	ACC	T	0.36	AAC	N	0.53	AGC	S	0.24
AUA	I	0.17	ACA	T	0.28	AAA	K	0.43	AGA	R	0.21
AUG	M	1.00	ACG	T	0.11	AAG	K	0.57	AGG	R	0.21
GUU	V	0.18	GCU	A	0.27	GAU	D	0.46	GGU	G	0.16
GUC	V	0.24	GCC	A	0.40	GAC	D	0.54	GGC	G	0.34
GUA	V	0.12	GCA	A	0.23	GAA	E	0.42	GGA	G	0.25
GUG	V	0.46	GCG	A	0.11	GAG	E	0.58	GGG	G	0.25

Switching codons may affect translation or protein folding.

- The preferred codon may have more or more stable tRNAs. Switching from a preferred codon may make the codon-anticodon interaction a little less stable or slower than usual.
- ...or vice versa.
- Proteins fold during translation, so speeding up or slowing down translation might interfere with normal protein folding.

References

- Kim, et al. 2017. Reconstruction and evolutionary history of eutherian chromosomes.
<https://doi.org/10.1073/pnas.1702012114>
- Pan, Tau. 2018. Modifications and functional genomics of human transfer RNA. *Cell Research* 28: 395–404.
<https://doi.org/10.1038/s41422-018-0013-y>
- OMIM: <https://www.ncbi.nlm.nih.gov/omim>
- Codon usage: <https://www.kazusa.or.jp/codon/>
- BLAST: <https://blast.ncbi.nlm.nih.gov/Blast.cgi>