Silicon chemistry, and its consequences for siliconbased life

Dr. Michael J. Shaw Science Circle October 29, 2016

Silicon chemistry, and its consequences for siliconbased life

Dr. Michael J. Shaw Science Circle October 29, 2016

Part 1: Silicon at "High" Temperatures: Silicates

Today's Itinerary...

Gratuitous Cat Photo: Seth

- Science Fiction Tropes
- What is life, anyway?
- Silicon in Terrestrial Life
- "Search and Replace" Si for C?
- High Temperature Si-based life?
- Acknowledgements, Refs Etc...

In science fiction...

- Star Trek: The Devil in the Dark. The Horta
- Star Trek TNG: Memory Alpha. Nanites
 - Note the 2016 Nobel Prize for Molecular Machines
- Star Trek TNG: Home Soil. Silicon-chip lifeforms
 - "Ugly Bags of Mostly Water"

• Dune?

- Sandworms are suspiciously sensitive to moisture. Their larval stage (sand trout) seek out and encapsulate water, protecting the fictional desert ecosystem from this anthropogenic pollutant....
- Neuromancer: Artificial Intelligences based on computer chips...
- E.E. Smith's "Frigid-Blooded Poison-Breathers"

The Spock / Horta Action Figures come as a set as of 2013...

Back to Earth... SciFinder's 11 refs for "Silicon Based Life"

- Shirley Peng, "Silicon-Based Life in the Solar System," Silicon, 2015, 7, 1 -3.
- David Jacob, "There is no Silicon-based Life in the Solar System," *Silicon* **2016**, 8, 175 176.
- "Silicon-based life!" Chris Ennis, Chemistry Review 2002,12, 2 6.
- "Zeolite catalysts as enzyme mimics. Toward silicon-based life?" Norman Herron, ACS symposium series **1989**, 392, 141 -154
- 251 refs which contain "Silicon", "based", and "life" but these are more about performance of electronic devices...

Back to Earth... SciFinder's 11 refs for "Silicon Based Life"

- Shirley Peng, "Silicon-Based Life in the Solar System," Silicon, 2015, 7, 1 -3.
- David Jacob, "There is no Silicon-based Life in the Solar System," Silicon 2016, 8, 175 -176.

About Si life on Titan. Apparently, no "Neptuna Fish" either.

Will talk about cryo-silicon based life another time

What is "Life"?

Examples of terrestrial life...

• [And where can I get one?]

NASA's definition of life:

"Self-sustaining chemical system capable of Darwinian evolution"

Discussed at: <u>http://io9.gizmodo.com/can-these-seven-words-</u> really-define-all-life-in-the-uni-1657129771

Clay-involved in origin of life?

Template synthesis. Idea is 50 years old now. Further reading:

- <u>http://www.smithsonianmag.com/science-nature/the-origins-of-life-60437133/?all</u>
- <u>http://www.bbc.com/earth/story/20160823-the-</u> idea-that-life-began-as-clay-crystals-is-50-years-old
- <u>http://www.news.cornell.edu/stories/2013/11/che</u> <u>micals-life-may-have-combined-clay</u>

Modern Applications...

Impact of Pt and V₂O₅ on Ethanol Removal from Moist Air Using Pellet Silica-Bound NaY

Ming-Chun Liu, Chu-Chin Hsieh, Jyh-Fu Lee, and Jen-Ray Chang Ind. Eng. Chem. Res., 2015, 54 (35), pp 8678-8689 Publication Date (Web): August 17, 2015 (Article) DOI: 10.1021/acs.iecr.5b01628 The performances of NaY-SiO₂, Pt/NaY-SiO₂, and V₂O₅/NaY-SiO₂ in removing ethanol from water containing air stream were investigated using a fixed-bed adsorber. The adsorption capacity of Pt/NaY-SiO₂ is much greater than those of NaY-SiO₂ and V₂O₅/NaY-SiO₂,...

Both have 4 electrons in their outermost shell

Both can form 4 bonds at once

³P₀

 $^{3}P_{0}$

 ${}^{3}\mathsf{P}_{0}$

7

1!

Pł

30.

I٧

3:

7.

14 IVA PERIODIC TABLE Atomic Properties of the Elements 6 1/2 He H al af light in sum and 200 702 455 -(mact) (it= isitar) VIA C.005 07 x 10 Liquid (And the second JUR 177 x 10"G 3 4 interinty strang κ. 7, 2 ÷. Be 1100 20 x 10⁻⁰ lp Nel F Carbon B N 0 CUND SEE UNV 13 7 JUT 410 - 10" In 1.0.0 137.030 200 12.011* 6 873 721 AM 5,200 641 960 x 10¹⁰ 경태요 $1s^22s^22p^2$ 11 %... 12 3, 15 😪 18 3 17 5% 1.105 @ Na Ma A P a Ar 2006 x 18⁻⁰⁰ J K Canta MAP 1000 2014 11.2603 12 IB Ð **NB** VB VIB IE VIB IB VII 19 22 23 7 24 28 29 %... 30 1E. • 14 G > Sc Ti Fe Ni Se K V Mn Co G As Kr Br /2 155 ÷ Browing 78,000 Si 41 2. 37 38 1. 6 7. St Rh Ag So Ŷ Z NЬ Ru Čď Rb Mo Tc Pd In the second se Te Paper Part Silicon 28.085* 65 h. 66 72 73 7. 74 5. 78 78 ٩., 77 ٠., 74 ٦, 81 Yr. 註之 63 5 Ba Re Hf Ta W Oa ľr' Bl Gai Pt **T1** PЬ Åщ At: Rn $[Ne]3s^23p^2$ Tanan Talah Dagar^a Sa^ra 7 Januar 100 110.40 Carls. Sec. Party 7.4467 8.1517 104 +, 105 +, 106 107 108 Rf Db Sg Bh Ha 87 **60** 'a, 109 110 113 114 Uup Fr Ra Rg Ħ Mt Ds Cn Uut LT Uns Diro indexed.org Factorian Color 32 100 and a 5 (201) /2 Ge 5 Τ. 5 71 ч. Gd Eu Th Dy E La Sli Pr Ho Nd Pm Sm Yb New York 100 58 Ce Germanium Cedum 140.116 72.630 Np Bk Ac Τh Pa U Pa. Cf Es No Аш Cm Pm Md L Tel: day) 100 A $[\Delta r] 3d^{10} 4s^2 4n^2$ [Δr]

LPAC amendend of

Why Si?

https://www.nist.gov/pml/periodic-table-elements

Silicon in Terrestrial Life?

Element	Si	С	Fe	Mn	V
Approx Abundance in Crust (%)	28	0.03	5	1	0.01

- The abundance of Si is in sharp contrast to its presence in living organisms.
- Not due to any inability of "our" biochemistry to handle silicon.

Advanced Inorganic Chemistry, 6th Edition, Cotton, F.A.; Wilkinson, G.; Murillo, C.A.; Bochmann, M. Wiley-Interscience, New-York: 1999.

https://en.wikipedia.org/wiki/Abundance_of_elements_in_Earth%27s_crust

Diatoms, Rice, Barley, and many other plants

- Some plants have to manage silicic acid,^d seem to use 2 transporter systems cooperatively,^a with 6 variants known in diatoms.^b
- Si can help increase mobility of Fe, under Felimiting conditions^c

^a Ma, J.F.; Yamaji, N. *Trends Plant Sci.* 2015, 20, 435-42. DOI: 10.1016/j.tplants.2015.04.007.
 ^b Yamaji, N.; Chiba, Y.; Mitani-Ueno, N.; Ma J. F. *Plant Physiol*. 2012, 160, 1491-7. doi: 10.1104/pp.112.204578

^c Pavlovic J.; Samardzic, J.; Kostic, L.;, Laursen, K.H.; Natic, M.;, Timotijevic, G.; Schjoerring, J.K.; Nikolic, M. Ann Bot. **2016**, 118, 271-80. doi: 10.1093/aob/mcw105

^d Ma, J. F. "Silicon Transporters in Higher Plants," Advances in Experimental Medicine and Biology 2010, 679, pp 99-109

Diatoms

- Build internal skeletons out of nanostructured SiO₂.
 Organism manages the deposition of SiO₂.
- Structures of the key proteins are rare. Found one, but not been released yet on the RSC PDB, no pic
- "SITs have no significant homology to any other protein sequences but hydropathy analysis suggests that they are integral membrane proteins comprising 10 transmembrane α -helices"

- Knight et al, Nature Communications, 2016, 7.

https://commons.wikimedia.org/wiki/File:Diatoms.png

Relatively easy to breed Silicon capabilities into terrestrial life...

- The Arnold Group at Caltech have bred thermophilic bacteria that produce small amounts of organosilanes. Selective breeding after <u>3</u> generations increased the ability of the cytochrome-c enzyme to put Si into hydrocarbons by a factor of 2000, in a silane-rich environment.
- <u>http://www.sciencemag.org/news/2016/03/researcher</u> <u>s-take-small-step-toward-silicon-based-life</u>
- Since 3 generations can increase the effectiveness so much, conclude there isn't much that our kind of life needs Si for.

Artificial uses in research

Artificial amino acid

Stefen et al Organometallics 2009, 28, 6059-6066 Small molecules to fit in biochemical receptor

https://www3.rcsb.org/ligand/21P Lippert et al, Chem. Med. Chem. 2009, 4, 1143.

https://www3.rcsb.org/ligand/21P

Lippert et al, Chem. Med. Chem. 2009, 4, 1143.

Can we "Search and Replace" Si for C?

- No.
 - [Mirror-Mirror Star Trek universe end of talk, thanks for coming!]
- What! Wait... Why?
 - Bond Strengths
 - Multiple Bonding
 - Electronegativity
 - Size
 - Redox

Attribution: Zephyris, Wikipedia

Consequence: Si-H more reactive than C-H

Bond Energies

	The state for	State of the state			S. 2. 2	22	716 54.00			and the state	
100		kJ/mol									
	From ^a		Н		С	F		Cl	-0	=O	-N
	Carbon		416		346 ^b	48	85	372	336	799	305
1.12.20											
	Silicon		323		250-	58	32	391	368	642	355
					335						
		Sal SA			小 為一世。		3.00	Says (199		1 1 A	
		From ^b		E-E			E=E		E≡E		
	1 and	carbon		346	5		602		835		
100	A STO	silicon		222	2		100.3	2 ^c	n/a	4	and the second
	and the by	all the state	-	E C	"有什么	-	C = S	i 163 ^d	TA PAR	C. A.	and see

^a Advanced Inorg. Chem., 6th Edition, Cotton, F.A.; Wilkinson, G.; Murillo, C.A.; Bochmann, M. Wiley&Sons, New-York: 1999.
 <u>b http://www.wiredchemist.com/chemistry/data/bond_energies_lengths.html</u>
 c Avakyan et al Organometallics 2006, 25 (26), pp 6007–6013
 d Walsh, R. Accounts of Chemical Research 1981 14 (8), 246-252

Bond Energies

Consequence: Si likes to bond to other elements more than itself... no long chains.

THE DALL PR	2 27 Ja 3 - 5 - 1	1		19 18 TA	1.2	The second	10. 2000 A. S. S.		and the second second	1.12
1	kJ/mol									
From ^a		Н		С	F		Cl	-0	=0	-N
Carbon		416		<mark>346^b</mark> 48		5	372	336	799	305
Silicon		323		<mark>250-</mark> 58		32	391	368	642	355
				335						
			1	1230 支。		25 10	and the second		- 18 - 18 - Sal	
	From ^b		E-E			E=E		E≡E		
A sect	carbon		346		602			835		1 31 4
E A CAR	silicon		222			100 ^c		n/a		S PARTY
San Start	Call the Call	and the	S. A. LAND			C = Si 163 ^d		the statement of the		and such

 ^a Advanced Inorg. Chem., 6th Edition, Cotton, F.A.; Wilkinson, G.; Murillo, C.A.; Bochmann, M. Wiley&Sons, New-York: 1999.
 <u>b http://www.wiredchemist.com/chemistry/data/bond_energies_lengths.html</u> c_Avakyan et al Organometallics 2006, 25 (26), pp 6007–6013

d Walsh, R. Accounts of Chemical Research 1981 14 (8), 246-252

Bond Energies

Consequence: Fancy multiply bonded rings do not persist if Si present.

Alse.		kJ/mol									
and the second	From ^a		Н		C F			Cl	-0	=0	-N
1	Carbon		416		346 ^b 48		5	372	336	799	305
PLACE OF											
	Silicon				250- 335			391	368	642	355
	A DEA	A CON		15	· 指系。 [注		A de	Sarah 1		の志思	
		From ^b		E-E	E-E		E=E		E≡E		
	The A	carbon		346	346		602		835		1314
111	MAG	silicon		222	222		100.32 ^c		n/a		
	ANC. D.	S. ST. ST.	1.27	6.7			C = C; 1Cod		The state of the second		A State State

^a Advanced Inorg. Chem., 6th Edition, Cotton, F.A.; Wilkinson, G.; Murillo, C.A.; Bochmann, M. Wiley&Sons, New-York: 1999.
 <u>b http://www.wiredchemist.com/chemistry/data/bond_energies_lengths.html</u>
 c Avakyan et al Organometallics 2006, 25 (26), pp 6007–6013

d Walsh, R. Accounts of Chemical Research 1981 14 (8), 246-252

Bond Energies

Consequence: CO₂ is molecular SiO₂ is a network solid

The state of the		2.		5 etc - 13	N.	The start	P. States		S ata	-15.75 -16
	kJ/mol									
From ^a		н		С			Cl	-0	=0	-N
Carbon		416		346 ^b	485		372	336	799	305
Silicon	icon 323			250-		2	391	368	642	355
		335								
	NSAT STR		1	The second		A. M.			5 65	23.23
	From ^b		E-E			E=E		E≡E		
The A	carbon		346			602		835		1 31 -
N.S.T.	silicon		222			100.32 ^c		n/a		
and the state of the			AL		C = S	i 163 ^d	A Por		and and	

 ^a Advanced Inorg. Chem., 6th Edition, Cotton, F.A.; Wilkinson, G.; Murillo, C.A.; Bochmann, M. Wiley&Sons, New-York: 1999.
 <u>b http://www.wiredchemist.com/chemistry/data/bond_energies_lengths.html</u> c Avakyan et al Organometallics 2006, 25 (26), pp 6007–6013 d Walsh, R. Accounts of Chemical Research 1981 14 (8), 246-252

Internal Structure to Orbitals....

Si - Si Internal change in orbital sign causes repulsions when distance too short C - C No extra repulsions! Strong bonds.

Nevertheless... silenes

An isolable silene compound. Contains Si = Si and lotsa protection

Takahiro et al *Organometallics* **2008**, *27*, 3325. DOI: 10.1021/om8003543

Cross eyed stereographic view.

Carbon has a large supporting cast

- H, O, N
- P, S, Fe, Zn
- Mg, Ca, Na, K, Cl
- Trace elements
- P instead of Si?
 - BioAvailability!
 - Pourbaix...

Attribution: Zephyris, Wikipedia

Pourbaix Diagrams

- Interesting forms of soluble silicate exist outside of the usual biochemical conditions, i.e. on the edges of viability under terrestrial conditions.
- Si more available under "reducing" and "basic" conditions.
- Pourbaix Diagrams "map" the conditions where certain species are stable.
- Usually Concentration vs pH or Potential vs pH

Pourbaix Diagram of Fe

https://upload.wikimedia.org/wikipedia/commons/thumb/8/8a/Fe-pourbaixdiagram.svg/440px-Fe-pourbaix-diagram.svg.png

Pourbaix for Silicates

The Horta Hears a Who

A chemist's advice for hard science fiction

- Many Pourbaix diagrams are for 25° and 1 atm...
 - Expect Horta environment to be reducing, basic, hot, & high P.
 - Fe(s) and C(s) can reduce silicates Si... aqueous environment would set limits.
- Underground?
 - High P/T yield supercritical water? More aggressive...
 - Magma? ③ ... water is key in the formation of many "interesting" minerals...
 - Hydrothermal synthesis is used in labs to make "interesting" structures (e.g. zeolites) which can do catalysis

While crystals grow, minerals are not alive... No Darwinian processes

Minerals?

- The kinds of things that silicon does are illustrated by known minerals.
- An assumed chemical basis of Si-based life will have to cope with the tendency for silicates to form minerals.
- Have to assume very limited supply of C, otherwise C-based life with Si as a minor player
- How can information be encoded by silicates?

Tetrahedra & Octahedra

Aluminosilicates share O atoms at vertices... Other metals (Fe, Mn, V, Cr etc) can substitute in octahedral

Rezzed here today for your viewing pleasure with Dr. K's Molecular Rezzing Kit

Can represent structures with just the shapes...

An aluminosilicate... Expect Al to be a major character in the story of silicate-based life

In solution, silicates form short chains and rings

Motifs which repeat in mineral structures

In SL, cubes guided positioning of tetrahedral... "snap-togrid" was helpful. A chemist's advice for hard science fiction

How likely is a "silicate DNA"?

Can build all sorts of structures in theory... not necessarily stable. Blue chain above you is a left handed spiral. Red chain is a right handed spiral. Chains by themselves flop around Could possibly connect such spirals with loops and use octahedral metals as connectors

BUT... NOTHING STOPS FURTHER AGGLOMERATION INTO SHEETS.

Silicates, Aluminosilicates form sheets, & 3D structures

X-Ray Data for Jadeite imported into SL. NaAlSi₂O₆

Link to rotating stereogram

Fluorapophyllite by neutron diffraction

 $\mathsf{K} \operatorname{Ca}_4 \operatorname{Si}_8 \operatorname{O}_{28} \mathsf{F} \mathsf{H}_{16}$

Includes H₂F⁺

"a pretty and layered structure" -me

Prince, E. American Mineralogist **1971**, *56*, 1243-1251

DNA-style encoding is out...

- Could sheet layers encode information?
- Linus Pauling in 1930's predicted silicates could roll up into scrolls Pauling, L. C. Proc. nat. Acad. Sci. Wash., 1930, 16, 123
- "Scrolls" discovered in 1950's in chrysotile (a form of asbestos)
- Nanotubes can be prepared reliably today from copper silicate

Chrysotile Mg₃ Si₂ O₉ H₄

http://www.dpa-llc.com/chemjs/ for motion stereo gif

Synthetic Chrysotile

http://www.dpa-llc.com/chemjs/ for motion stereo gif

Silicate Nanotubes

TEM Image of Natural Halloysite (A form of chrysotile) Bates et al, *Science* **1950**, *111*, 512-513 Computed Electrostatic fields in different morphologies of halloysite Guimarães et al, J. Phys.Chem. **2010**, 114, 11358

Synthetic Silicate Nanotubes

Figure 5. (a) TEM image of $CuSiO_3 \cdot 2H_2O$ nanotubes. (b) TEM image of $Mg_3Si_2O_5(OH)_4$ nanotubes. Inset: electron diffraction patterns taken from a bundle of $Mg_3Si_2O_5(OH)_4$.³⁴

Wang, X.; Li, Y. Inorg. Chem. 2006, 45, 7522-7534

Energetics of chrysotile scrolls

Depends on many factors... mechanical and chemical

Krasilin, A.A.; Gusarov, VV. Technical Physics Letters 2016, 42, 55-58

2 Billion Years of Single Celled Life

- Let's keep it simple...
- Need to encode information...
 - could use scrolls with "defects" where a redox-active metal is substituted for an Al³⁺.
 - Example: Fe²⁺ / Fe³⁺
- Need to move stuff around...
 - Could make particles flow through nanotubes
 - Zeolites already catalyze chemical reactions

2 Billion Years of Single Celled Life

- Let's keep it simple...
- Need to encode information...
 - could use scrolls with "defects" where a redox-active metal is substituted for an Al³⁺.
 - Example: Fe²⁺ / Fe³⁺
- Need to move stuff around...
 - Could make particles flow through nanotubes
 - Zeolites already catalyze chemical reactions
 - Crack heavy hydrocarbons into shorter chains
 - Storage of gases etc

Proteins

DNA

RNA

Can scrolls unroll to be read?

- Dunno. For Fiction, assume so.
- If I were writing the story, I'd use strategically placed replacement of Al³⁺ with V³⁺ / V⁴⁺

V³⁺ likes to be octahedral

V⁴⁺ likes to be square pyramidal Maybe an extra OH⁻ present to help pry layers apart.

Why the transition metals?

- Electron transfer is a pathway to energy flow.
 - Have to process chemical energy like hydrothermal vents... no sunlight underground.
- Structural consequences to electron transfer give a mechanism for shape changes
 - Vanadium redox might allow rolling and unrolling of scrolls.
 - Not sure if Cu^{+/2+} can do the same thing for nanotubes.

Can scrolls unroll to be read?

My scribbles... a "double layer scroll" replicating My scribbles... a "double layer scroll" Partially unrolling for transcription?

Some conclusions

- Need a low-carbon environment if Si is going to play an important role. Dealbreaker?
- In hot, high-pressure, reducing environments, Si has enough complex chemistry to potentially support "Darwinian self-replication".
- Under the right conditions, aluminosilicates have chemistry that might initiate self-catalysis
- Expect to find "defect"-filled nanoparticles if Sibased life were around... but the "defects" would have to recur almost identically from particle to particle if they formed by replication.

Thanks!

- Members and Students of the Science Circle!
- Students and Faculty of Dept. of Chem., SIUE.
- Generous support of National Science Foundation for our work on heme-nitrosyl complexes, NSF-CHE 1566509
- My cats for their patience...